
Department of Informatics
Der Technischen Universität München

Bachelor’s Thesis Information Systems

REST-based Data Integration

Services for Software

Engineering Domain

Fridolin Jakob Koch

Department of Informatics
Der Technischen Universität München

Bachelor’s Thesis Information Systems

REST-basierender

Datenintegrationsdienst für die

Domäne des Software Engineering

REST-based Data Integration

Services for Software Engineering

Domain

Erstbetreuer: Prof. Dr. rer.nat. Florian Matthes
Zweitbetreuer: M.Sc Klym Shumaiev
Tag der Einreichung: 15.07.2016

Erklärung

I confirm that this bachelor’s thesis is my own work and I have documented all
sources and material used.

München, den 15.Juli 2016

Fridolin Jakob Koch

3

Abstract

Data integration is a widespread problem describing the process of synchro-
nizing data from different systems with a target system. Within the software
engineering domain architectural data is often spread across different sys-
tems. Combining this data into a software architecture knowledge management
(SAKM) systems to capture the reasoning behind architectural decisions is an
important task. Even if the task of data integration is a very common problem,
it is still a main reason for the inhibited adoption of SAKM systems within
the software engineering domain. In order to simplify the data integration
process for both developers and users a prototypical JSON-Schema based data
integration tool for the software engineering domain is introduced in this thesis.
Central aspect of the work is to provide a lightweight and easy to extend data
integration tool using node.js as underlying platform. The application consists
of two standalone applications, a server which handles the transformation of
data and a state of the art web application which provides a user interface for
controlling the server. This thesis describes the uses cases and architectural
requirements for such systems. A small evaluation was conducted towards
the end to verify the usefulness and extensibility of the tools. After positive
feedback was collected in aftermath of the evaluation, future work may focus on
further extending the prototypical applications with features satisfying demands
of the software engineering domain.

Keywords: Data Integration, Extract-Transform-Load (ETL), Software Archi-
tecture Knowledge Management (SAKM), Prototype Implementation, JSON-
Schema

I

Contents

List of Abbreviations IV

List of Figures V

List of Tables VII

List of Listings VIII

1. Introduction 1
1.1. Motivation . 1
1.2. Research questions . 2
1.3. Thesis Structure . 2

2. Use Cases 3

3. Existing data integration tools 7

4. Architecture 10
4.1. Server . 11

4.1.1. Overview . 11
4.1.2. Technology . 12

4.2. Client . 14
4.2.1. Overview . 14
4.2.2. Technology . 15

5. Implementation 16
5.1. Server . 16

5.1.1. Dependencies . 17
5.1.2. Gulp . 18
5.1.3. TypeScript Definitions 20
5.1.4. Docker . 20
5.1.5. Application Core . 22

II

Contents

5.1.6. RESTful API . 23
5.1.7. Persistence Layer . 25
5.1.8. Message Queuing . 27
5.1.9. Third Party Services . 28
5.1.10. Pipeline Execution . 32
5.1.11. Data transformation . 33

5.2. Client . 47
5.2.1. Dependencies . 47
5.2.2. Index Page and Layout 48
5.2.3. Dashboard . 49
5.2.4. Service Configuration . 50
5.2.5. Mappings . 52
5.2.6. Pipelines . 54
5.2.7. Pipeline Executions . 57

6. Evaluation 60

7. Conclusion 63

Bibliography 64

A. Appendix i

III

List of Abbreviations

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

DSL Domain-specific language

ETL Extract Transform Load

GUI Graphical User Interface

MVC Model-View-Controller

MVVM Model-view-viewmodel

RDBMS Relational database management system

RDF Resource Description Framework

SAKM Software architecture knowledge management

SPA Single-page application

URI Uniform Resource Identifier

IV

List of Figures

5.1. Server directory structure . 17
5.2. Application core directory structure 22
5.3. Persistence Layer Class Diagram 25
5.4. Service extension layer . 28
5.5. File structure of a third party service 30
5.6. UML sequence diagram describing the processing process 32
5.7. Data transformation workflow 42
5.8. Object Graph Tree Structure 43
5.9. Client application navigation bar 48
5.10. Modal dialog for changing the API endpoint 49
5.11. Dashboard of the client application 49
5.12. Dialog visualizing the JSON-Schema of a service 50
5.13. Service configuration page . 51
5.14. Service configuration form of the GitHubIssueExtractor 52
5.15. Table of all mappings stored in the system 53
5.16. Service selection and schema visualization of the mapping form . 53
5.17. Mapping form with two mapping groups containing several prop-

erty mappings . 54
5.18. Table with Pipelines . 55
5.19. Modular dialog form for creating or editing pipelines 56
5.20. Modular dialog for uploading data to execute passive extractor

services . 56
5.21. Toast message after successfully queuing a pipeline for execution 57
5.22. Pipeline executions table . 58
5.23. Pipeline execution detail page 59

A.1. Readme file of the SyncPipes REST Server i
A.2. Guide for implementing a new service page 1 ii
A.3. Guide for implementing a new service page 2 iii
A.4. SyncPipes REST API Documentation page 1 iv

V

List of Figures

A.5. SyncPipes REST API Documentation page 2 v
A.6. SyncPipes REST API Documentation page 3 vi
A.7. SyncPipes REST API Documentation page 4 vii
A.8. SyncPipes REST API Documentation page 5 viii
A.9. SyncPipes REST API Documentation page 6 ix
A.10.README.md of the client application x

VI

List of Tables

2.1. Use cases of the SyncPipes prototype 6

VII

List of Listings

4.1. TypeScript compiler output for missing method implementation 13

5.1. Docker entrypoint node.js script 21
5.2. Express MVC controller using TypeScript decorators 23
5.3. SyncPipes routing decorators 24
5.4. Implementation of a model using mongoose 26
5.5. Example data which is deeply nested 34
5.6. Example of a flat dataset . 35
5.7. Example mapping of the author from nested to flat 38
5.8. Mapping without using the foreignKey property 39
5.9. Mapping using the foreignKey property 40
5.10. Mapping using the primaryKey property 41
5.11. Destination value groups example 45

VIII

1. Introduction

1.1. Motivation

The steadily increasing complexity of today’s enterprise software systems re-
quires a sophisticated methodology for managing the architecture of such
systems. In most modern software projects a wide range of tools is used for
managing architectural artifacts [1]. These tools could be collaborative issue
tracking applications like Atlassian JIRA or just spreadsheet application like
Microsoft Excel. Software design can be described as a wicked problem, therefore
it is reasonable to capture the process which lead to certain design decisions.
Large software projects often involve more than one person occupying the role
of the software architect (SA), accordingly it is important that all involved SAs
have the same architectural knowledge to take decisions [2]. Software architec-
ture knowledge management (SAKM) systems aim to provide a solution for this
particular problem domain. As in the most environments project data is spread
among different tools, the data has to be integrated into the SAKM system,
this process is still a challenging task and often inhibts the adoption of SAKM
systems[1][3]. Although there is a wide range of commercial and open-source
data integration applications, the most of them are either tailored to specific
use-cases or very generic and require a lot effort to integrate into existing system
environments. The goal of this work is to design and implement a framework
that supports software engineers to build data integration services.

1

1. Introduction

1.2. Research questions

To achieve the goal of this thesis the following three research questions where
defined:

RQ1: What are the use cases of data integration services?

RQ2: What are the features of the existing data integration service providers?

RQ3: How to design a framework for the data integration services in software
engineering domain?

1.3. Thesis Structure

This thesis focuses on the design, implementation and evaluation of the appli-
cation prototype called SyncPipes. The strucute of the thesis aligns with the
previously defined research questions. Chapter 2 focuses therefore on answering
RQ1 by deriving use-cases from relevant literature. To answer RQ2 a short
analysis of similar application is conducted in Chapter 3. Rather then analyzing
all tools in detail it was the goal to find similarities in differences in the tools
to have an overview how the problem of data integration commonly solved.
The following Chapters focus on answering RQ3. In chapter 4 the architec-
ture of the application is defined based on the use cases elicited in chapter 2.
Following the defined architecture, Chapter 5 describes how the application
was implemented in detail. The focus there is to describe the process of data
transformation. Chapter 6 describes the method and results of the evaluation
of the implement prototype. The thesis concludes with a conclusion

2

2. Use Cases

For the design and implementation of the application it was necessary to derive
use cases. These uses cases where derived from common problems in software
architecture knowledge management. The architectural data of a project is
often spread across different tools or systems, integrating this data into a SAKM
system and vice versa, is still a challenging task [1]. Often this circumstance
inhibits the adoptions of SAKM systems [3]. Based on the problem two roles
where identified using such a data integration system.

The role of the Developer (DEV) represents software developers who extend
the application with custom services implementing predefined interfaces to
support compatibility with other systems. Actors having the role of a Soft-
ware Architect (SA) use the application to define, execute and monitor
data integration pipelines. SA’s have good knowledge about the source and
target system’s domain model but do not necessarily have deeper knowledge
about the application. Derived from these preliminary definitions, for both
the Developer and the Software Architect, we defined the following use
cases.

A DEV who wants to extend the application with a custom service supporting
data integration from or into an external system (UC 1) needs to be provided
with guidance in the form of technical documentation as well as with an
application architecture that supports a simple way of creating new services,
for example through predefined interfaces. Because not all systems require or
support bidirectional data integration, the services are split into two different
categories. Either a service extracts data from a system or a service loads
data into a system. This categorization reduces the implementation effort
for the DEV. Implemented services should be usable as generic as possible,
therefor the DEV defines certain configurable parameters like the credentials of
a web service or query parameters for an API (UC 2). The system supports
configurable services by providing an interface which allows the DEV to define

3

2. Use Cases

the parameters of a service. Some project data which shall be integrated may
not be extractable from a system, this could be files which are only on the local
computer of the SA. To be able to extract this kind of data, the relevant data
has to be passed to the pipeline at execution time. Therefore the DEV uses an
interface provided by the system to declare if an implemented service is either
Active, if the service extracts the data actively from another system e.g. an
API, or Passive for services needing additional data at run-time (UC 3). The
DEV exposes the domain model of the underlying system using a mechanism
provided by the application (UC 4). To enable this the system must provide
or define a standardized meta model to the DEV enabling the exposure of a
domain model.

The system exposes a graphical interface (GUI) to the end user for storing
and modifying multiple instances of a service’s configuration (UC 5). While
this interface will mainly be used by the SA, the DEV could also use the
graphical interface to test and validate his implemented service (UC 6). The
SA uses the application’s graphical interface to explore the domain model of
the source or target system (UC 7). The SA uses the application’s graphical
interface for creating mappings between the source and the target system
(UC 8). The DEV also uses the application to test the functionality of his
implemented services (UC 9). The Mappings shall be stored independently of
the service configurations to maximize its re-usability. To integrate data from a
source to a target system the SA uses the application’s GUI to create pipelines
between the two systems (UC 10). A pipeline is composed of one service
configuration for each the extractor and the loader service and a mapping
previously created. The DEV uses the same functionality to test and verify the
correctness of implemented services (UC 11). If a pipeline was defined by the
SA or the DEV, the graphic interface of the system can be used to invoke the
execution of that pipeline. The DEV uses this functionality for testing purposes
when implementing services (UC 12), while the SA uses the functionality in a
production environment where actual project data is integrated in or from a
SAKM system (UC 13). The SA uses the application’s graphical interface to
verify the correctness of executed pipelines by reviewing logs generated while
a pipeline was executed (UC 14). When the data model of the underlying
source or target system changes, the SA uses the application to modify existing
mapping configurations using the same graphical interface described before
(UC 15). The SA uses the application’s API to trigger the execution of a

4

2. Use Cases

pipeline using events or a time based scheduling tool (e.g. crontab1) (UC 16).
Table 2.1 presents the summarized list of the use cases grouped by the actor’s
roles.

DEV use cases
UC 1 A developer implements services using predefined interfaces to

extend the functionality of the service e.g. for extracting Data from
a specific source like GitHub or Microsoft Excel.

UC 2 The DEV defines configuration parameters which are required to
execute the service.

UC 3 The DEV defines if data is fetched actively (e.g. REST-Based) or
passively (e.g. Microsoft Excel files) by the service.

UC 4 The DEV exposes the domain model of the source or target system.
UC 6 The DEV uses the application’s graphical interface to test the

correctness of the configuration of his implement service.
UC 9 The DEV creates a mapping configuration between a source and a

target system’s domain model using his implement service(s).
UC 11 The DEV creates a pipeline using created services to verify its

correctness.
UC 12 The DEV invokes the execution of a pipeline through the applica-

tion’s GUI to test created pipelines and its underlying services.
SA use cases

UC 5 The SA provides configuration data like a URI, credentials or query
parameters which are specific to the selected service.

UC 6 The SA uses the application’s graphical interface to explore the
data model of a service.

UC 7 The SA uses the application’s GUI to explore the domain model of
a service’s underlying system.

UC 8 The SA creates a mapping configuration between the source and
the target systems domain model.

UC 10 The SA creates pipelines by selecting a extractor and loader service
configuration and a mapping using the application’s GUI.

UC 13 The SA invokes the execution of a pipeline through the application’s
GUI to integrate project data from a system to another.

1http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html

5

http://pubs.opengroup.org/onlinepubs/9699919799/utilities/crontab.html

2. Use Cases

UC 14 The SA uses the application’s GUI to review the logs of executed
pipelines.

UC 15 The SA modifies existing pipeline if there is an change in the data
model.

UC 16 The SA uses the API of the application to automate the execution
of pipelines.

Table 2.1.: Use cases of the SyncPipes prototype

6

3. Existing data integration tools

There are several data integration tools on the market, some of them are even
available as open-source software. To identify possible alternatives for solving
the identified problem and observe how the existing solutions handle identified
use cases, a review of available data integration tools is required. The review
process consisting of three steps has been conducted and described below.

1. Using search engines like Google, Google Scholar and Scopus2 multiple
searches involving combinations of the keywords data integration tools,
ETL tools and ETL and "linked data" were performed. The tools which
where found and considered relevant where:

• Apatar3

• CloverETL4

• IBM InfoSphere DataStage5

• Informatica6

• Pentaho7

• RhinoETL8

• Talend Open Studio for Data Integration9

• UnifiedViews10

2https://www.scopus.com
3http://www.apatar.com/
4http://www.cloveretl.com/
5http://www-03.ibm.com/software/products/en/ibminfodata
6https://www.informatica.com/products/data-integration.html
7http://www.pentaho.com/
8https://hibernatingrhinos.com/oss/rhino-etl
9https://www.talend.com/download/talend-open-studio#t4

10http://unifiedviews.eu/

7

https://www.scopus.com
http://www.apatar.com/
http://www.cloveretl.com/
http://www-03.ibm.com/software/products/en/ibminfodata
https://www.informatica.com/products/data-integration.html
http://www.pentaho.com/
https://hibernatingrhinos.com/oss/rhino-etl
https://www.talend.com/download/talend-open-studio#t4
http://unifiedviews.eu/

3. Existing data integration tools

2. Only tools which are at least provide the core functionality as open source
components where selected for the review:

• Apatar

• CloverETL

• Pentaho

• RhinoETL

• Talend Open Studio for Data Integration

• UnifiedViews

3. By analyzing the user documentations, manuals and demonstration videos
of the selected tools the key technologies and principles were identified
and described in the following paragraphs.

Apatar is an open-source data integration application based on Java. The
software can be used as desktop or server application or it can be embedded into
third party software. It supports a wide range of interfaces to mainly relational
databases and web services. Apatar features a visual designer where data
integration pipelines can be defined without the need of programming. However
the developers community is no longer active (last commit in 201111).

CloverETL is a Java-based partially open-source data integration product.
The product is available in three different versions12. CloverETL Designer
is a desktop application based on the Eclipse Rich Client Platform (RCP)
13 enabling data integration from a desktop environment. The CloverETL
Designer allows visual composition of extract-transform-load (ETL) pipelines.
The created pipelines can be used with the commercial CloverETL Server which
adds scheduling and monitoring capabilities. The application also supports the
implementation of more complex operation throughout a Java based domain-
specific language (DSL) called CTL.

Pentaho Data Integration14 consists of a Java-based desktop application,
enabling the user to visually compose ETL pipelines, and an engine which

11https://sourceforge.net/p/apatar/code/1391/log/?path=
12http://www.cloveretl.com/products
13https://wiki.eclipse.org/Rich_Client_Platform
14http://www.pentaho.com/product/data-integration

8

https://sourceforge.net/p/apatar/code/1391/log/?path=
http://www.cloveretl.com/products
https://wiki.eclipse.org/Rich_Client_Platform
http://www.pentaho.com/product/data-integration

3. Existing data integration tools

can either be deployed on the same machine, another machine or on multiple
machines as a cluster. The desktop application features a large library of
pre-build components which can be used to compose custom pipelines.

Talend Open Studio for Data Integration is also based on Eclipse RCP
and therefore a desktop application. In contrast to the other tools mentioned
before, it only operates as code generator and does not integrate the data itself.
A visual designer is used to define data integration pipelines. The tool then
generates Java scripts based on the defined pipeline. These scripts can then be
executed to do the data integration.

These applications, as well as similar, can be summarized as generic ETL
tools with a focus on the problem domain of data-warehousing and business
intelligence. These tools all have in common that they focus on visually creating
data pipelines. Non of them requires the end user to have software engineering
skills. Even if all tools are extensible, if not explicit their are at least partially
open-source, their main focus is not the application’s extensibility but its
rich tool set of predefined connectors and data-transformers. The goal of
these applications is to cover a very broad domain and achieve a very high
interoperability between all kinds of different systems. This makes the tools
more complex and requires a higher effort to understand and integrate them
into existing infrastructure landscapes.

Another application worth mentioning is UnifiedViews, which focuses on ETL
processes handling linked-data [4]. The application handles the integration of
Resource Description Framework (RDF) data and therefore, is very domain
specific. The application is implemented in Java and is available as open-source
software15. The application is very similar to other ETL tools and provides a
graphical user interface for creating pipelines between a source and a target
system.

Another identified tool the C# .net ETL framework RhinoETL. The frame-
work is very minimalistic and does not provide a graphical user interface. It
focuses on the developers implementing custom ETL pipelines rather then
on the end user. Even though being minimalistic the framework provides a
lightweight DSL and a library of typical data transformation operations like
aggregation or partitioning.

15https://github.com/UnifiedViews/Core

9

https://github.com/UnifiedViews/Core

4. Architecture

Based on the use cases described in Chapter 2, a prototype of the application
was created. The following chapter describes which architectural approach
was chosen for the server and the client application. On the server side the
Hypertext Transfer Protocol (HTTP) is used to provide a RESTful API. The
client side application is a single-page web application which connects to the
server using the HTTP protocol via XMLHttpRequests from the end users
browser.

Both the server and the client follow the SOLID object orient design principle,
which was originally described by Robert C. Martin. SOLID is an acronym for
the following design principles [5]:

• Single responsibility principle "A class should have one, and only
one, reason to change."

• The Open Closed Principle "You should be able to extend a classes
behavior, without modifying it."

• The Liskov Substitution Principle "Derived classes must be substi-
tutable for their base classes."

• The Interface Segregation Principle "Make fine grained interfaces
that are client specific."

• The Dependency Inversion Principle "Depend on abstractions, not
on concretions."

10

4. Architecture

The technology stack used for the client- and server-side application is often
refereed as MEAN-Stack which is an acronym for the used technologies [6]:

• MongoDB

• Express.js

• Angular.js

• Node.js

Using a predefined set of technologies enables a quicker prototypical implemen-
tation, since important architectural choices already have been made. Also
the used technologies are mature and have proven their capabilities in the
industry.

4.1. Server

4.1.1. Overview

Derived from use case UC 1 the application is build to be extensible by
a developer. The application consists of a core which holds the logic for
providing a RESTful interface, storing configurations (UC 5), mappings (UC
8), pipelines (UC 10) and transforming data (UC 13). The application is
extensible with two different types of services:

1. Extractor-Services enable the developer to extract data from custom
source systems. As stated in use case UC 3 data can be fetched actively
or passively, therefore the developer is required to implement a method
indicating the type of the service (either passive or active) to the appli-
cation. Passive Extractor-Services are supplied with the raw data, to
process, at run-time.

2. Loader-Service enables the developer to load transformed data into a
specific target system.

11

4. Architecture

Both service types require the developer to expose a service specific configuration
which the application will use to store service specific configuration parameters
like security credentials or request parameters (UC 2).

The application uses the JSON-Schema16 meta model to enable the developer
to describe the domain model of service (UC 4).

Despite most popular web application application follow the Model-View-
Controller (MVC) architectural design pattern, the SyncPipes application does
not utilize the MVC pattern. The obvious reason for this is the lack of a
view layer. The HTTP server uses JSON as data interchange format which is
nativity supported by JavaScript. For this reason no view layer is necessary.
The application however strictly separates the Model and the Controller to
adhere to the separation of concerns software design principle.

The application provides a Kernel class which implements two run modes.
These run modes act as a producer-consumer construct. The first run mode,
called server, exposes an HTTP API to provide an interface for configuring and
monitoring the application. The API utilizes the RESTful principle originally
described by Roy Thomas Fielding [7] to provide a standardized and well known
way of accessing the application’s data. Using the REST-Interface the client
invokes the execution of pipelines, instead of immediate execution, the pipeline
is en-queued into a dedicated message queue. The en-queued messages are
distributed to at least one worker. The worker is a dedicated process which
uses the application’s kernel in its second run-mode. The worker run-mode
acts therefore as a consumer for the message queue.

4.1.2. Technology

TypeScript was chosen as programming language for the prototypical implemen-
tation of server side application. TypeScript is an open-source programming
language developed by Microsoft. The language is "[...] a typed superset of
JavaScript that compiles to plain JavaScript". [8]. The core of the JavaScript
programming language is described in the ECMA Standard 262 [9]. With
the 6th edition of the ECMAScript language specification, published by Ecma
International in June 2016, features like modules, classes and arrow functions

16http://json-schema.org/

12

http://json-schema.org/

4. Architecture

where introduced. TypeScript also provides these features along with other
features:

• Generics [10, Sec. 1.9]

• Interfaces [10, Sec. 7]

• Decorators also known as annotations [10, Sec. 8.6]

• Enumerated types [10, Sec. 9]

The main reason for choosing TypeScript over JavaScript was to make the
extensibility of the application (UC 2) as intuitive as possible for the developers.
JavaScript does not provide interfaces in the way object oriented programming
languages like Java or C# do, this makes it more difficult for developers
to implement new services for the application. Even if TypeScript provides
interfaces only at compile-time [10], it makes it easier for developers to find
errors based on the output of the Typescript compiler.

services/githubIssueExtractor/Configuration.ts(5,14): error

TS2420: Class ’Configuration’ incorrectly implements

interface ’IServiceConfiguration’. Property ’getSchema’ is

missing in type ’Configuration’.

↪→

↪→

↪→

Listing 4.1.: TypeScript compiler output for missing method implementation

JavaScript is mainly used to enhance the user experience on the client side,
but it can also be used on the server side of a web application. A commonly
used server-side JavaScript solution is node.js17, which is based on the V8 18

JavaScript engine. The minimum node.js version which is required for executing
the application is v6.0.0, because the application is compiled to JavaScript
complying with the ECMAScript 2015 language Specification. External depen-
dencies of the application are managed through the node.js packages manager
npm19.

Since the application was developed using TypeScript, it has to be compiled to
JavaScript. Along with compiling the application, other tasks like copying files,
17https://nodejs.org/en/
18https://developers.google.com/v8/
19https://www.npmjs.com/

13

https://nodejs.org/en/
https://developers.google.com/v8/
https://www.npmjs.com/

4. Architecture

deleting old built artifacts or executing unit tests are required to be executed
repeatedly. To Achieve this task automatically so called build automation tools
are used. A widely used build automation tool for JavaScript is gulp.js20 which
is build upon node.js. Using a build automation tool helps new developers,
which are creating services for the application, to quicker use their service
because they don’t need to understand the whole build process in detail.

The application is build upon the express.js21 web framework, which is widely
used within the node.js environment. Many other frameworks and applications
are build upon express.js22. The framework provides an simple and lightweight
abstraction layer to the HTTP protocol, which allows users to quickly implement
HTTP-Servers.

The application needs to be able, to store various configuration values (UC
10). Because the application is JavaScript and JSON-Schema based, it was
decided to use MongoDB as database system. MongoDB is a document-oriented
database which uses JSON as data interchange format. This allows seamless
integration into JavaScript applications.

As stated before the application utilizes the producer-consumer design pattern.
The communication between the producer and the consumer is performed using
the opensource message broker software RabbitMQ23. RabbitMQ implements
the Advanced Message Queuing Protocol (AMQP) which is an "[...] an open
standard for passing business messages between applications or organizations"
[11]. Using RabbitMQ allows the application to distribute work across multiple
processes or physical systems.

4.2. Client

4.2.1. Overview

As the Software Architect needs to create, maintain, execute and monitor
pipelines easily a basic graphical interface was build using modern web develop-

20http://gulpjs.com/
21http://expressjs.com
22http://expressjs.com/en/resources/frameworks.html
23https://www.rabbitmq.com/

14

http://gulpjs.com/
http://expressjs.com
http://expressjs.com/en/resources/frameworks.html
https://www.rabbitmq.com/

4. Architecture

ment techniques. For the client application a single-page web (SPA) application
was implemented. In contrast to classic web application were the whole page is
reloaded for each action taken by the user, a SPA only reloads partial areas of
the page using XMLHttpRequests, also known as asynchronous JavaScript and
XML (AJAX).

4.2.2. Technology

For the client application the JavaScript framework Angular.js24 was used.
Angular.js is based on the Model-view-viewmodel (MVVM) architectural design
pattern. The MVVM pattern is a variation of Martin Follower’s Presentation
Model [12] and was first described by John Grossman in 2005 [13]. The idea of
the MVVM pattern is the same as of the MVC pattern, to separate the data
and logic from the presentation layer. The model layer of the MVVM pattern
is like the model layer of the MVC pattern an contains the domain models or
an data access layer. In this application the model layer is the REST client
which handles accessing the data of the API. The view layer is the same as
in the MVC pattern which is the user interface, in our case the view layer is
the HTML markup. The view and the model are connected with each other
through the ViewModel which exposes properties and methods which can be
used by the view. The ViewModel acts as stateful data converter between the
View and the Model. Angular.js automatically synchronizes the values of the
view with the values of the model. A example would be a form field which is
bound the the property of a model, if the value of the form field is changes
Angular.js updates the value of the model and vice versa.

24https://angularjs.org/

15

https://angularjs.org/

5. Implementation

The following chapter describes how the application was implemented to fulfill
the use cases as well as the architectural constraints described in Chapter 4.
The client and the sever applications are strictly separated and do not depend
on each others source code. The communication between the two systems
is completely done via the HTTP-Protocol utilizing the RESTful API of the
server.

5.1. Server

All files related to the server application are stored inside the server folder of
the project. An overview over all files can be found in Figure 5.1. The dist

folder contains the compiled application, which is executable by node.js. Docu-
mentation for developers extending the application is stored inside the docs

folder, this documentation can also be found in the appendix. The documenta-
tion of the API was created using API Blueprint which is a Markdown-based
description language for documenting HTTP APIs25. The file package.json
and the folder node_modules are used by node.js, the exact functionality is
explained in Subsection 5.1.1. The application uses environment variables for
the configuration. Besides using the operating system for setting these variables,
the .env file can be used to set these variables. The .env file is processed by a
npm package called dotenv 26 which parses the file an makes the defined variables
available to the applications process. The Dockerfile, docker-compose.yml,
.dockerignore and docker.js are used for making the application compatible
with Docker27, details about the implementation of Docker can be found in
Subsection 5.1.4. The gulpfile.js defines the build process of the application
and is elucidated in Subsection 5.1.2. TypeScript definition dependencies are
25https://apiblueprint.org/
26https://github.com/motdotla/dotenv
27https://www.docker.com/

16

https://apiblueprint.org/
https://github.com/motdotla/dotenv
https://www.docker.com/

5. Implementation

stored inside the typings.json a complete description of this file and the
associated functionality can be found in Subsection 5.1.3.

server

dist

docs
node_modules

src

typings

.dockerignore

.env

.gitignore

Dockerfile
docker-compose.yml

docker.js

gulpfile.js

typings.json

Figure 5.1.: Server directory structure, green boxes are folders and blue boxes
are files.

5.1.1. Dependencies

The dependencies of the application are managed using node.js ’s package man-
ager npm, which is shipped with node.js by default. Using a package manager
has several advantages, it allows to specify the applications dependencies by
a specific version. Npm provides a special syntax for declaring the required
version, that allows for example to specify the minimum required version, if a
new version is available npm will use this version instead. If a required package
has dependencies itself npm will resolve this dependencies automatically. All
dependencies are stored inside the package.json which contains a JSON-Object
with several keys describing the package. The dependencies of are package
are split into two different keys. The dependencies key lists all dependencies
required for executing the application, while the devDependencies key lists all
packages required for building the application. To install the dependencies

17

5. Implementation

defined inside the package.json the developer has to invoke the npm install
command inside his terminal.

5.1.2. Gulp

Building the application requires several steps to be executed, to make this
process reproducible and easy to use for the developer, gulp.js was used. Gulp.js
is a build automation tool for node.js written in JavaScript. It uses the node.js
stream api28 to transform data. Over 2000 plugins are available for gulp.js29 this
allows to quickly implement sophisticated build processes. Plugins are available
as node.js packages an can be obtained using npm. Since these dependencies
are only required for building the application, they where defined inside the
devDependencies section of the applications package.json file. The following
packages where used to create the build process:

gulp Gulp.js it self, provides basic functions for reading, transforming and
writing files.

gulp-typescript Gulp.js plugin wrapping the TypeScript compiler, used for
compiling TypeScript to JavaScript.30

del Library for deleting temporary files and old build artifacts generated during
the build process.31

gulp-live-server Used for managing the applications processes during develop-
ment.32

run-sequence Lightweight utility to run depended gulp task in order.33

mocha JavaScript test framework with support for node.js.34

chai Assertion library with support for node.js used in conjunction with chai35.

gulp-mocha Gulp plugin to run Mocha tests with gulp.js.

28https://nodejs.org/api/stream.html
29https://github.com/gulpjs/gulp#what-is-gulp
30https://github.com/ivogabe/gulp-typescript
31https://github.com/sindresorhus/del
32https://github.com/gimm/gulp-live-server
33https://github.com/OverZealous/run-sequence
34https://mochajs.org/
35http://chaijs.com/

18

https://nodejs.org/api/stream.html
https://github.com/gulpjs/gulp#what-is-gulp
https://github.com/ivogabe/gulp-typescript
https://github.com/sindresorhus/del
https://github.com/gimm/gulp-live-server
https://github.com/OverZealous/run-sequence
https://mochajs.org/
http://chaijs.com/

5. Implementation

Gulp itself consists of two different npm packages. The gulp package is a
library which is included in the gulpfile.js and where the build steps are
defined. The second package required for using gulp is gulp-cli which is
a command-line-tool for executing the gulpfile.js in the current directory.
The applications gulpfile.js defines several tasks which can be invoked on
the terminal by entering gulp <task-name>, where task name is one of the
following:

default The default task is invoked if gulp is executed without an argument.
The default task is an alias for the build task.

build The build task builds a executable node.js application by running
the clean, copy and compile tasks synchronously in that exact order.
This is necessary because gulp tasks run with maximum concurrency36.
Running clean in parallel with copy or compile would potential result
in a situation where files are deleted immediately after their creation.

clean The clean task deletes contents of the dist directory where the compiled
application is stored. The task is necessary to prevent side effect through
orphaned files, for example if the corresponding file has been deleted.

copy The clean task copies non Typescript files to the dist folder. An example
would be .json-files containing the JSON-Schema of a service.

compile The compile task compiles all TypeScript files ending with .ts to
JavaScript files and stores them inside the dist directory.

watch The watch task observes all TypeScript files for changes and executes
the build task if a file was changed.

serve The serve task executes the application, for this two processes are
started. One processes is executing the Kernel in worker mode, the
other in server mode. Like the watch task the server task observes the
file-system for changes an compiles the TypeScript files. In addition to
compiling the source code, the two processes are restarted after successful
compilation.

36https://github.com/gulpjs/gulp/blob/master/docs/recipes/
running-tasks-in-series.md

19

https://github.com/gulpjs/gulp/blob/master/docs/recipes/running-tasks-in-series.md
https://github.com/gulpjs/gulp/blob/master/docs/recipes/running-tasks-in-series.md

5. Implementation

5.1.3. TypeScript Definitions

Most of the available node.js packages are written in JavaScript, this leads
to the problem that the TypeScript compiler does not know the structure of
the package. That results in semantic errors when compiling a TypeScript
file accessing methods, classes or functions of a JavaScript file. To solve this
problem TypeScript provides so called declaration files37, which describe the
structure of the library used. Writing and managing these definitions is a time
intensive process for developers. A large collection of TypeScript definition
files is made available through an open source project called DefinitelyTyped38.
While the project has it’s own utility for managing TypeScript definition file
dependencies, the authors of the tool suggest to use another utility39 called
Typings40. We followed this suggestion for the implementation of our application.
Typings command-line application can be obtained using npm (npm install

–global typings). All required definition file dependencies are stored inside
a file called typings.json. The concept is very similar to the package.json
of npm. To install the stored dependencies a developer has to invoke typings
install on the command line.

5.1.4. Docker

Docker is an open-source project for lightweight visualization and software
deployment, it uses operating-system-level virtualization. We decided to use
Docker to provide a simple mechanism of running the application without having
to install several dependencies like MongoDB or RabbitMQ. A Docker container
is an runtime-instance of an image41. Docker images can be derived from other
Docker images, that minimizes the effort for building and running custom
containers. A public repository with images that can be used and customized
is available at https://hub.docker.com/. We used node:onbuild42 as base
image for our application. Only minimal tailoring was necessary to create
a custom image. The instruction for creating the image are stored inside

37https://www.typescriptlang.org/docs/handbook/writing-declaration-files.
html

38http://definitelytyped.org/
39https://github.com/DefinitelyTyped/tsd/issues/269
40https://github.com/typings/typings
41https://docs.docker.com/engine/reference/glossary/#image
42https://hub.docker.com/_/node/

20

https://hub.docker.com/
https://www.typescriptlang.org/docs/handbook/writing-declaration-files.html
https://www.typescriptlang.org/docs/handbook/writing-declaration-files.html
http://definitelytyped.org/
https://github.com/DefinitelyTyped/tsd/issues/269
https://github.com/typings/typings
https://docs.docker.com/engine/reference/glossary/#image
https://hub.docker.com/_/node/

5. Implementation

the Dockerfile inside the root folder of the application. Running SyncPipes
requires two processes to be started, by default only one process runs inside
a Docker container. As the current application is prototype we decided to
run both processes inside a single container. To achieve this an auxiliary
JavaScript file called docker.js was created. The file serves as entry point for
the container and starts two child processes using the node.js child_process

module43. Within the script a function start is defined which takes a file
name as argument. The function spawns a new node.js process and redirects
the stdout and stderr to the parent process. If a child process exists, it is
automatically restarted after five seconds. The script can be found in Listing
5.1.

1 var child_process = require(’child_process’);
2

3 function start(file) {
4 var proc = child_process.spawn(’node’, [file]);
5 proc.stdout.on(’data’, function (data) {
6 console.log(data.toString());
7 });
8

9 proc.stderr.on(’data’, function (data) {
10 console.error(data.toString());
11 });
12

13 proc.on(’exit’, function (code) {
14 console.log(’Child process exited with code ’ + code);
15 setTimeout(() => {
16 start(file);
17 }, 5000);
18 });
19 }
20

21 start(’./dist/server.js’);
22 start(’./dist/worker.js’);

Listing 5.1.: Docker entrypoint node.js script

43https://nodejs.org/api/child_process.html

21

https://nodejs.org/api/child_process.html

5. Implementation

5.1.5. Application Core

All files related to the applications core are stored inside the src/app directory.
The directory structure is described in Figure 5.2. The directory structure was
chooses to reach the architectural goal of SoC.

src/app

controller
helper

model
provider

service

index.ts
inversify.conf.ts

Kernel.ts

Figure 5.2.: application core directory structure, green boxes are folders and
blue boxes are files.

The Kernel.ts contains a Kernel class which is central entry point of the
application. Initialization of the application components is handled inside that
class. To follow the inversion of control design principle (IoC) the npm pack-
age InversifyJS 44 was used. The package provides a lightweight dependency
injection component for TypeScript. We followed the package author’s sug-
gestion45 to configure the IoC container in a separate file inversify.conf.ts
which handles the configuration and loading of service-providers. Available
service-providers are stored inside the provider folder. All HTTP controllers
required for handling request and responses to or from the REST API are held
inside the controller folder. The helper folder contains several auxiliary
classes and functions required for data mapping and transformation. Models
of the ODM are stored inside the model folder. The service folder contains
interfaces and classes required for extending the application, these files are
re-exported within a single file called index.ts, this concepts is taken from
Angular.js 2 46 framework and is called barrel47.

44https://github.com/inversify/InversifyJS
45https://github.com/inversify/InversifyJS#step-3-create-and-configure-a-kernel
46https://angular.io/
47https://angular.io/docs/ts/latest/glossary.html#!#barrel

22

https://github.com/inversify/InversifyJS
https://github.com/inversify/InversifyJS#step-3-create-and-configure-a-kernel
https://angular.io/
https://angular.io/docs/ts/latest/glossary.html#!#barrel

5. Implementation

5.1.6. RESTful API

For implementing the API the Express framework was used, which is a popular
and widely used web framework. The framework is only a minimal layer on top
of the HTTP-Protocol providing features like routing and middleware handling.
Express describes several ways to structure an application48, we decided to use
the MVC style controllers approach where every resource has its own controller.
For the routing TypeScript decorators49 were used, decorators are syntactic
metadata and can be compared to Java annotations50. We used decorators as
an idiomatic approach for using TypeScript with Express. Listing 5.2 illustrates
a controller using decorators for the routing.

1 import { Request, Response } from ’express’;
2 // Import decorators
3 import { AbstractController, RoutePrefix, Route } from "./Controller";
4

5 // Define a prefix for all @Route decorators within the class
6 @RoutePrefix(’/mappings’)
7 export class MappingController extends AbstractController {
8

9 // Method is available at /mappings/ via HTTP GET
10 @Route(’/’, ’GET’)
11 index(request: Request, response: Response) {}
12

13 // Method with dynamic parameter is available at /mapping/:id via
HTTP-GET.↪→

14 // :id is dynamic and can be any value
15 @Route(’/:id’, ’GET’)
16 view(request: Request, response: Response) {}
17 }

Listing 5.2.: Express MVC controller using TypeScript decorators

For storing the metadata about the routing, a npm package called reflect-
metadata51 was used. The package provides a method defineMetadata which
allows to define arbitrary metadata for a class, method or property. Listing 5.3
shows how the reflect-metadata package is used for storing routing metadata.

48http://expressjs.com/en/starter/faq.html#how-should-i-structure-my-application
49https://www.typescriptlang.org/docs/handbook/decorators.html
50http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.7
51https://github.com/rbuckton/ReflectDecorators

23

http://expressjs.com/en/starter/faq.html#how-should-i-structure-my-application
https://www.typescriptlang.org/docs/handbook/decorators.html
http://docs.oracle.com/javase/specs/jls/se8/html/jls-9.html#jls-9.7
https://github.com/rbuckton/ReflectDecorators

5. Implementation

The RoutePrefix function is a decorator for classes which defines a prefix for
all methods that are decorated with the @Route decorator, which is defined
below.

1 export function RoutePrefix(prefix: string) {
2 return function (target: Function): void {
3 Reflect.defineMetadata(’route:prefix’, prefix, target);
4 };
5 }
6

7 export function Route(route: string, method: string) {
8 return (target: Object, propertyKey: string, descriptor:

TypedPropertyDescriptor<any>) => {↪→

9 Reflect.defineMetadata(’route:path’, route, target, propertyKey);
10 Reflect.defineMetadata(’route:method’, method, target,

propertyKey);↪→

11 };
12 }

Listing 5.3.: SyncPipes routing decorators

The defined metadata is later used in the Kernel’s server method, which
initializes the Express framework. The server method creates a new instance
of the Express router using express.Router()52. Afterwards the private
method loadController, which takes an instance of AbstractController as
an argument, is called. The method iterates over the methods of the given
instance, checks it for routing metadata and adds the route to the Express
router instance.

Besides initializing the routing the Kernel’s server method also configures
Express to use a middleware called body-parser 53 which parses the body of
HTTP PUT or POST requests. The body-parser middleware offers to parse
different formats, since our API only uses JSON as data interchange format
we just use the JSON handler. After the initialization is done listen with the
configured port is called on the Express instance.

52http://expressjs.com/en/4x/api.html#express.router
53https://github.com/expressjs/body-parser

24

http://expressjs.com/en/4x/api.html#express.router
https://github.com/expressjs/body-parser

5. Implementation

5.1.7. Persistence Layer

The application is required to persist several entities for this purpose MongoDB
was used. To access MongoDB we used mongoose54 which is a JavaScript based
Object-Document-Mapper (ODM) for accessing MongoDB. The purpose of an
ODM is the same as the purpose of an Object-Relational-Mapper (ORM), but
for document-orientated databases. Based on the class diagram in Figure 5.3
the structure of the MongoDB documents were defined.

<<Interface>>

IServiceConfig

+name: string
+service: string
+config: any
+created: Date
+updated: Date

<<Interface>>

mongoose.Document

<<Interface>>

IMappingGroup

+toPrefix: string
+properties: Array<IPropertyMapping>

<<Interface>>

IPropertyMapping

+fromPath: string
+toPath: string

+uniqueKey: boolean
+foreignKey: string

+primaryKey: boolean

<<Interface>>

IMapping

+name: string

+extractorService: string
+loaderService: string

+created: Date
+updated: Date

+groups: Array<IMappingGroup>

1

0..*

1

0..*

<<Interface>>

IPipeline

+name: string
+extractorConfig: IServiceConfig
+loaderConfig: IServiceConfig

+created: Date
+updated: Date

*

1..*

*

1..*
-mitgliedsName

-mitgliedsName

<<Interface>>

IPipelineExecution

+pipeline: IPipeline
+log: Array<ILogMessage>
+started: Date
+finished: Date

1

0..1

+executions: Array<IPipelineExecution>

<<Interface>>

ILogMessage

+level: string
+message: string
+context: any

1

0..*

Figure 5.3.: Persistence Layer Class Diagram

To implement a new model the following steps where conducted, first an
interface was created based on the UML model from Figure 5.3. The schema of

54http://mongoosejs.com/

25

http://mongoosejs.com/

5. Implementation

the MongoDB document was defined using mongoose.Schema55. The last step
was to create a mongoose.Model56 using both the defined interface and the
defined schema. The example implementation of the ServiceConfig model
can be found in Listing 5.4.

1 import * as mongoose from ’mongoose’;
2 // Define interface
3 export interface IServiceConfig extends mongoose.Document {
4 name: string,
5 service: string,
6 config: any,
7 created: Date;
8 updated: Date;
9 }

10 // Define Schema
11 var ServiceConfigSchema = new mongoose.Schema({
12 name: {
13 type: String,
14 required: true
15 },
16 service: {
17 type: String,
18 required: true
19 },
20 config: mongoose.Schema.Types.Mixed,
21 created: {
22 type: Date,
23 "default": Date.now
24 },
25 updated: {
26 type: Date,
27 "default": Date.now
28 }
29 }).pre(’save’, function (next) {
30 this.updated = new Date();
31 next();
32 });
33 // Create Model using the schema and the interface
34 export var ServiceConfig: mongoose.Model<IServiceConfig> =

mongoose.model<IServiceConfig>(’ServiceConfig’, ServiceConfigSchema);↪→

Listing 5.4.: Implementation of a model using mongoose

55http://mongoosejs.com/docs/api.html#schema_Schema
56http://mongoosejs.com/docs/api.html#model_Model

26

http://mongoosejs.com/docs/api.html#schema_Schema
http://mongoosejs.com/docs/api.html#model_Model

5. Implementation

The connection to MongoDB is established in the Kernel’s boot method.

5.1.8. Message Queuing

The communication between the worker process and API process is done
using the open source message broker RabbitMQ which implements the AMQP
messaging protocol. To be able to use AMQP with node.js a npm package called
amqplib was used. Like the database connection, the connection to RabbitMQ
is established inside the Kernel’s boot method. The AMQP communication is
encapsulated inside the JobScheduler class which handles both the sending
and the receiving of messages through RabbitMQ. The JobScheduler is a
service provider and therefore stored inside provider folder.

27

5. Implementation

5.1.9. Third Party Services

One central aspect of the application is the extensibility through so called
services, for that we defined several interfaces to which the developers service
must adhere. These interfaces are stored inside the service folder. A complete
overview of the interfaces can be found in Figure 5.4.

<<Interface>>

IService

+getName():

+getConfiguration(): IServiceConfiguration

<<Interface>>

IServiceConfiguration

+getSchema(): Schema

+store(): Object

+load(config: Object): void

+setConfiguration(config: IServiceConfiguation): void

+getSchema(): ISchema

+prepare(context: IPipelineContext, logger: ILogger): Promise<any>

<<Interface>>

IExtractorService

+extract(): stream.Readable

+getType(): ExtractorServiceType

<<Enumeration>>

ExtractorServiceType

Active

Passive

<<Interface>>

ILoaderService

+load(): stream.Writable

<<Interface>>

IPipelineContext

+pipeline: IPipeline

+inputData: Array<Buffer>

Figure 5.4.: Service extension layer

If a service requires a custom configuration, this could be credentials for access-
ing a database or web service, the service must create a custom configuration
class implementing the IServiceConfiguration. The service configuration
should describe the structure of the configuration data using JSON-Schema
therefore it must implement the getSchema() method which has to return an
instance of the ISchema interface. The ISchema interface is the applications

28

5. Implementation

internal representation of a JSON-Schema instance. An implementation of
the ISchema interface is provided by the application and can be used by the
developer. To persist instances of the configuration, the service must implement
the store() method, which returns a plain JSON object of the configuration
values. The object must validate against the configuration’s JSON-Schema
otherwise the application will throw an error. The load() method is used by
the application to load persisted configuration data from the database into the
service’s configuration.

As mentioned in Chapter 4 the system is extensible with two different types
of services. Both extractor and loader service have the same base interface
IService. The IService interface defines five methods which must be im-
plemented by the service. The getName() method must return the name of
the service as a string, the service name is used by the system and is exposed
through the REST API. The getConfiguration() method should return an
empty instance of the service’s configuration or null, if the service has no specific
configuration. The setConfiguration() method is called by the application to
set a specific configuration used for the extraction or loading process. A service
must describe the data it provides or expects using JSON-Schema, for this
purpose the getSchema() method has to be implement to return an instance
of the ISchema interface. The prepare() method is called by the SyncPipes
application right before the extraction or loading process starts. An instance of
IPipelineContext is passed along with an instance of the ILogger interface
to the prepare() method. The IPipelineContext has two properties, the
first property pipeline is an instance of IPipeline which is the pipeline that
will be executed. The second property inputData is an array of Buffers57

which is only available for passive extractor services. The second argument
passed to prepare() is an instance of ILogger which enables the services to
write log messages, which are associated with the current pipeline execution
by the application. Inside the body of the prepare() method the developer
should perform tasks which are required before the actual processing can start.
A example would be connection to a database system or setting up an HTTP
client with credentials. For indication if the initialization of the service was
successful or failed the method has to return a Promise58 object.

57https://nodejs.org/api/buffer.html
58https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_

Objects/Promise

29

https://nodejs.org/api/buffer.html
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Promise
https://developer.mozilla.org/de/docs/Web/JavaScript/Reference/Global_Objects/Promise

5. Implementation

A service which extracts data from a source system has to implement the
IExtractorService interface which extend the IService interface with two
additional methods. The getType() method must return a value of the
ExtractorServiceType enumeration which is either Active or Passive. If the
type is Passive, the application expects to be provided with additional data
through the REST API. The data is made available to the service through the
IPipelineContext.inputData property. Secondly a IExtractorService has
to implement the extract() method which must return a stream.Readable59.
The extractor service then uses this stream to push extracted data to the
application.

Loading data into another system is done with loader services. To implement
a loader the service the developer has to implement the ILoaderService

interface which also extends the IService interface. The interface requires
the implementation of the load() method which must return an instance of
stream.Writable60. Through that stream the services is provided with data,
which shall be loaded into the target system, by the application.

All third party services are stored inside the src/services folder, an example
of the file structure of a service is provided in Figure 5.5.

src/services/githubIssueExtractor

Configuration.ts

schema.json

service.ts
service.spec.ts

Figure 5.5.: File structure of a third party extraction service, where
the Configuration.ts contains an implementation of the
IServiceConfiguration interface. The schema.json contains
a JSON-Schema describing the data which the service ex-
tracts. service.ts contains the actual implementation of the
IExtractorService. The service.spec.ts file contains unit test,
this file is optional.

A third party service has to be loaded by the application, for this purpose
the Kernel class provides a loadService method which takes an instance of

59https://nodejs.org/api/stream.html#stream_class_stream_readable
60https://nodejs.org/api/stream.html#stream_class_stream_writable

30

https://nodejs.org/api/stream.html#stream_class_stream_readable
https://nodejs.org/api/stream.html#stream_class_stream_writable

5. Implementation

the service, which should be loaded, as an argument. The service loading is
conducted inside the bootstrap.ts file.

There are four example services provided with the source code of the applica-
tion. The GitHubIssueExtractorService uses the GitHub REST API61 to
extract repositories, issues and comments from a GitHub organization, which
can be defined in the configuration. The PureIssueLoaderService is the
corresponding loader service to the GitHubIssueExtractorService service. It
uses the data from GitHub to store it in a MySQL database. The extensions
also creates foreign key relations. While the GitHubIssueExtractorService
is a active extractor service, because it fetches the data on its own, the
RequirementsExcelExtractorService is a passive extractor service. The
service extracts requirements and test-cases from a Microsoft Excel file. For
that the service needs to be provided with at least one XLSX file by the
application, therefore the service is passive. The last example service is
the RequirementsExcelExtractorService which loads the extracted require-
ments and test cases into a MySQL database.

61https://developer.github.com/v3/

31

https://developer.github.com/v3/

5. Implementation

5.1.10. Pipeline Execution

Transforming data using a extractor and loader services requires executing a
defined pipeline, for that all modules of the application have to work together,
Figure 5.6 provides an overview how the modules interact.

SA
API

Process
RabbitMQ Worker Process MongoDB

execute pipeline

find pipeline configuration

pipeline configuration

schedule execution

acknowledge

acknowledge

notify

acknowledge

insert pipeline execution entry

Extractor Loader

prepare prepare

prepared prepared

load

extract

receive data

transform data

Loop

[extractor has data]

save log messages

Figure 5.6.: UML sequence diagram describing the processing process

The execution of a pipeline is started via the REST API. For that a special
resource exists at /api/v1/pipelines/:id/actions/execute, where :id is
the id of the pipeline which should be started. The url has to be invokes using a
HTTP POST request. If the extractor service which is associated with a pipeline
that is passive, the endpoint expects a mulitpart/form-data62 request pro-
viding the data which should be processed. For parsing mulitpart/form-data

requests the application uses a Express middleware called Multer 63. After
verifying that the requested pipeline exists, the associated services are loaded
and if the request is valid, the application creates a new IPipelineExecution
62https://www.ietf.org/rfc/rfc2388.txt
63https://github.com/expressjs/multer

32

https://www.ietf.org/rfc/rfc2388.txt
https://github.com/expressjs/multer

5. Implementation

object and persists it in the database. Afterwards a new PipelineContext is
created and populated with data. The PipelineContext is then serialized to
JSON and sent to the message broker. Finally a HTTP response containing
a JSON representation of the IPipelineExecution is sent to the client. The
worker process is connected to RabbitMQ listening for messages, if a message is
received it deserializes the payload back into a PipelineContext. Inside the
worker process the services associated with the pipeline are loaded from the
ServiceManager. Afterwards prepare() is called on both the extractor and
the loader service, the worker waits until both prepare() methods are finished.
Using the node.js stream api the worker reads the data from the extractor ser-
vice and pushes it to the mapper, which is an instance of stream.Transform64.
Using a mapping stored in the database, the mapper transforms the data
provided by the extractor service and pushes it to the loaded service. The
functionality of the mapper is described detailed in Subsection 5.1.11.

5.1.11. Data transformation

The following subsection describes the process of data transformation through
an exemplary use case described below. We constructed a use case with data
that could have been extracted from an issue tracker application. The data is
deeply nested and should be transformed into a flatter JSON structure, the
transformation process should also work backwards. An excerpt of the nested
data, which was used as input data, can be found in Listing 5.5. The expected
output data, which is flat structured, is described in Listing 5.6.

64https://nodejs.org/api/stream.html#stream_class_stream_transform

33

https://nodejs.org/api/stream.html#stream_class_stream_transform

5. Implementation

1 {
2 "projects": [
3 {
4 "id": 1,
5 "name": "Project A",
6 "issues": [
7 {
8 "id": 1,
9 "title": "Mapper is not working",

10 "body": "The mapper is not working",
11 "author": {
12 "id": 1,
13 "username": "test.user1",
14 "gender": "male"
15 },
16 "comments": [
17 {
18 "id": 1,
19 "body": "Its working for me",
20 "author": {
21 "id": 2,
22 "username": "test.user2",
23 "gender": "male"
24 }
25 },
26 // more comments...
27]
28 },
29 // more issues...
30]
31 },
32 // more projects...
33]
34 };

Listing 5.5.: Example data which is deeply nested, authors can occur multiple
times.

34

5. Implementation

1 {
2 "projects": [
3 {
4 "id": 1,
5 "name": "Project A"
6 },
7 // All remaining projects
8],
9 "issues": [

10 {
11 "id": 1,
12 "title": "Mapper is not working",
13 "body": "The mapper is not working",
14 "project_id": 1,
15 "author_id": 1
16 },
17 // All remaining issues
18],
19 "comments": [
20 {
21 "id": 1,
22 "body": "Its working for me",
23 "issue_id": 1,
24 "author_id": 2
25 },
26 // All remaining comments
27],
28 "users": [
29 {
30 "id": 1,
31 "username": "test.user1",
32 "gender": "male"
33 },
34 // All remaining users
35]
36 }

Listing 5.6.: Example of a flat dataset, the association between the entities is
preserved by using foreign keys like project_id.

Three fundamental elements are required to conduct the data transformation
process:

35

5. Implementation

1. Both services must describe the data they either provide or expect using
JSON-Schema. These schemata are passed to the mapper as ISchema
objects.

2. A mapping, which describes how to transform the data between the source
and the target system.

3. Data which will be transformed, the data must be validatable against the
JSON-Schema of the extractor service.

The mapping is composed using the three different classes IMapping, IMappingGroup
and IPropertyMapping. The classes are structured in the following way:

IMapping Meta data container for the mapping.

name The name of the mapping used for identifying withing the user
interface.

extractorService The name of the extractor service.

loaderService The name of the loader service.

created Date when the mapping was created.

updated Date when the mapping was last modified.

groups An array of IMappingGroups.

toPrefix The Prefix path inside the target object.

properties An array of IPropertyMappings.

fromPath The path from where the value is extracted.

toPath The path were the value should be inserted.

primaryKey If this flag is set to true the data transformer will
merge the target object, if mapped multiple times, to an
object.

uniqueKey If the target object is an array this flag will, if set
to true, configure the data transformer to only add the
object once.

foreignKey Placement path of the current mapping group.

36

5. Implementation

The mapping is defined using the IMapping which encapsulates the IMappingGroup
which then again encapsulates the IPropertyMapping. A core concept of the
mapper is a special file-path like construct to access properties of a JSON
object. For example using the path projects/issues/author/name on the
object from Listing 5.5 would refer to a list with the names of all issue authors.
These paths are used for defining the mapping.

The IMapping is a top level object which holds meta-data about the mapping.
The only relevant part for the actual data transformation process is the groups
property, which contains an array of IMappingGroup instances.

A IMappingGroup encapsulates IPropertyMapping objects which are mapped
to the same prefix path. The prefix path is a path to a JSON object or ar-
ray inside the target object. The purpose of the IMappingGroup is to group
the property mappings by their common target. Following the example of
the nested to flat mapping, the properties are grouped by the four top level
arrays projects, issues, comments and users. The reverse mapping from
flat to nested would then define groups like projects, projects/issues,
projects/issues/author, projects/issues/comments, etc. The groups are
necessary for the data transformer to correctly re-associate properties in the
target object, e.g. if a user John Doe has the email address john.doe@acme.com
in the source object, the user should have the same email address in the target
system as well.

The IPropertyMapping class has two properties fromPath and toPath
which use the same format as the IMappingGroup’s toPrefix property. The
fromPath property defines which values should be extracted from the source
object. The extracted values are then inserted into the target object using the
toPath property.

The uniqueKey is a boolean flag, if set to true, it indicates that a mapped
property is a unique key. The transformer takes this information and won’t
insert duplicate objects into the target. The uniqueKey is only used if the
toPrefix of the outer IMappingGroup points to an array. Particular this is
useful for denormalized data structures, an example would be the author

entity in Listing 5.5, which exists, multiple times, to prevent duplicate entries
in the target object, the uniqueKey flag can be used. An example mapping

37

5. Implementation

for transforming the author from the nested to the flat dataset, using the
uniqueKey property, can be found in Listing 5.7.

1 {
2 "toPrefix": "users",
3 "properties": [
4 {
5 "fromPath": "projects/issues/author/id",
6 "toPath": "users/id",
7 "uniqueKey": true
8 },
9 {

10 "fromPath": "projects/issues/author/username",
11 "toPath": "users/username",
12 "uniqueKey": false
13 },
14 {
15 "fromPath": "projects/issues/author/gender",
16 "toPath": "users/gender",
17 "uniqueKey": false
18 },
19 {
20 "fromPath": "projects/issues/comments/author/id",
21 "toPath": "users/id",
22 "uniqueKey": true
23 },
24 {
25 "fromPath": "projects/issues/comments/author/username",
26 "toPath": "users/username",
27 "uniqueKey": false
28 },
29 {
30 "fromPath": "projects/issues/comments/author/gender",
31 "toPath": "users/gender",
32 "uniqueKey": false
33 }
34]
35 }

Listing 5.7.: Example mapping of the author from nested to flat, in favor of
readability only properties important for this example are used.
The mapping configures the mapper to extract all authors from
the source dataset using the id as an unique identifier.

38

5. Implementation

The foreignKey property, is used as placement information to preserve rela-
tions between the entities. The foreignKey property controls where the parent
IMappingGroup has to be placed. This property is especially important if a flat
data structure is mapped to a nested data structure. Without the foreignKey
property, the mapping of the issues from the flat to the nested data-set would
look like in Listing 5.8.

1 [
2 {
3 "toPrefix": "projects/issues",
4 "properties": [
5 {
6 "fromPath": "issues/id",
7 "toPath": "projects/issues/id",
8 "uniqueKey": true
9 },

10 {
11 "fromPath": "issues/title",
12 "toPath": "projects/issues/title",
13 "uniqueKey": false
14 },
15 {
16 "fromPath": "issues/body",
17 "toPath": "projects/issues/body",
18 "uniqueKey": false
19 },
20 {
21 "fromPath": "issues/project_id",
22 "toPath": "projects/id",
23 "uniqueKey": false
24 }
25]
26 }
27]

Listing 5.8.: Mapping without using the foreignKey property, in favor of read-
ability only properties important for this example are used.

The problem in Listing 5.8 is that the mapper cannot automatically detect
which issue has to be associated with which project. For this purpose the
foreignKey property was introduced, it gives the mapper the information

39

5. Implementation

required for preserving the associations. The enhanced mapping with the use
of the foreignKey property can be found in Listing 5.9.

1 [
2 {
3 "toPrefix": "projects/issues",
4 "properties": [
5 {
6 "fromPath": "issues/id",
7 "toPath": "projects/issues/id",
8 "uniqueKey": true
9 },

10 {
11 "fromPath": "issues/title",
12 "toPath": "projects/issues/title",
13 "uniqueKey": false
14 },
15 {
16 "fromPath": "issues/body",
17 "toPath": "projects/issues/body",
18 "uniqueKey": false
19 },
20 {
21 "fromPath": "issues/project_id",
22 "toPath": "projects/issues/$foreignKey"
23 "uniqueKey": false,
24 "foreignKey": "projects/id"
25 }
26]
27 }
28]

Listing 5.9.: Mapping using the foreignKey property, this is the refactored
solution for Listing 5.8.

The primaryKey boolean flag is only relevant if the toPrefix of the parent
IMappingGroup points to an object. If the flag is set to true the mapper merges
the properties of the extracted values with the properties in the target object.
An annotated example describing how the primaryKey property is interpreted
by the data transformer can be found in Listing 5.10.

40

5. Implementation

1 // Source object
2 {
3 "users": [
4 {"id":1, "name": "John Doe"},
5 {"id":1, "location": "Munich"},
6]
7 }
8 // Mapping
9 [{"fromPath": "users/id", "toPath": "user/id", "primaryKey": true},

10 {"fromPath": "users/name", "toPath": "user/name"},
11 {"fromPath": "users/location", "toPath": "user/location"}]
12 // Object after 1. iteration
13 {
14 "id": 1,
15 "name": "John Doe"
16 }
17 // Object after 2. iteration with primaryKey = true
18 {
19 "id": 1,
20 "name": "John Doe"
21 "location": "Munich"
22 }
23 // Object after 2. iteration with primaryKey = false
24 {
25 "id": 1,
26 "location": "Munich"
27 }

Listing 5.10.: Mapping using the primaryKey property. The blocks in the
Listing are separated with comments. The first block describes
the object from the source system with just a single key users. In
the second block a mapping is defined, in favor of readability only
reduced IPropertyMapping objects are present. The toPrefix
of the mapping group would be user. The third block shows
how the user property of the target object would look like after
transforming the first entry of the users array. The fourth and
fifth block shows each how the object would look like after the
transforming the second entry from users array. The fourth
block with primaryKey set to true, the fifth set to false.

The data transformation is centrally handled by the GraphTransformer, it is
instantiated with the schemata of the extractor and loader service as well as
with an instance of IMapping. While instantiating, the class converts each

41

5. Implementation

IMappingGroup of the passed IMapping into a tree. This is done inside the
classes groupMapping() method, which returns an array of tree MappingTree
instances. This conversion is necessary to extract the data in the correct order
and maintain association while extracting. The groupMapping() differentiates
between two cases, if all fromPath attributes inside a IMappingGroup have
the same prefix, the first element of the path is taken as root node of the
tree. Applied to Listing 5.8 the root node of the tree would be projects. If a
mapping group contains fromPath attributes with have a different prefix, an
empty string is taken as root node. The empty string internally refers to the
top level element of the input data. In Listing 5.5 the top level element is the
object with the projects key.

After the GraphTransformer has been initialized it can be used to transform
instances of the source schema using the provided mapping, for that it provides
the transform() method. The method can be separated into five different
phases which are described in Figure 5.7.

Build	object	
graph

Instantiate	
structure

Extract	 from	
source	
object

Find	foreign	
key	

Mappings

Insert	into	
target	object

1

Source object Target Schema Object graph
Mapping trees Extracted Values Extracted Values

Mapping trees

2 3 4 5

Figure 5.7.: Data transformation workflow, the green arrows are the different
steps of the transformation process. The blue boxes describe the
required input data for each step.

The method expects a JSON object as parameter. In phase one the passed
object will be transformed into a tree structure using the ObjectGraphNode

and ObjectGraphLeaf classes. To implement a tree structure the composite
structural design pattern was used [14, 163 et seqq.]. A visualization of an
object graph generated based on the data from Listing 5.6 can be found in
Figure 5.8.

In the second step of the transformation process an instance of the target
schema is created, for that the static method instantiateStructure() is
called, it takes a JSON-Schema as parameter. The passed schema object

42

5. Implementation

_root

projects

[0]

id name issues

[0]

id title body author

id username gender

comments

[0]

id body author

id username gender

[...]

[...]

[...]

Figure 5.8.: Object graph tree structure from Listing 5.6. Nodes enclosed by
square brackets are arrays in the original object.

must be dereferenced, in the context of a JSON schema that means that all
references65 have to be replaced with the actual value. The Schema class
supports this functionality by having a boolean parameter for the toObject()
method. Currently the dereferencing implementation only supports inline
references. The instantiateStructure() recursively traverses the schema
and creates the corresponding object. It stops when a node of the array type is
found, this is necessary since the length of each array is unknown at this point
of the transformation process.

The third step is to iterate over the previously created mapping groups. The
first step of each iteration is to extract all values, as defined by the current
mapping group, from the object graph. Extracting the values is done inside the
extract() method, the method expects two arguments. The first argument
is an array of partial object graphs. The partial object graphs are extracted

65http://json-schema.org/latest/json-schema-core.html#anchor25

43

http://json-schema.org/latest/json-schema-core.html#anchor25

5. Implementation

from the object graph, generated in step one, by passing the name of the
MappingTree’s root node to object graph’s getNodeByPrefix() method, which
then returns all partial graphs having a root node with the given name. The
second argument of the extract() method is the MappingTree object of
the current mapping group. The extract() method itself iterates over the
passed array of object graphs and then extracts the values using the passed
MappingTree. Each extracted value is combined with the mapping information
from the IPropertyMapping responsible for the extraction of the value. The
data structure of the combined object is defined by the IDestinationValue

interface. Finally the extracted values are grouped inside an array based on the
structure of the originally passed array of object graphs, we call these groups
destination value groups. The method then returns an array of destination
value groups, an annotated example of the output can be found in Listing
5.11.

44

5. Implementation

1 groupMapping(
2 "projects", // toPrefix
3 // fromPath, toPath, isPrimaryKey, isUnique
4 propertyMapping("projects/id", "projects/id", true, true),
5 propertyMapping("projects/name", "projects/name")
6);
7 [
8 // Destination value group of the first project
9 [

10 {"to": "id", "value": 1, "unique": true, "primary": true, "foreignKey":
null},↪→

11 {"to": "name", "value": "Project A", "unique": false, "primary": false,
"foreignKey": null}↪→

12],
13 // Destination value group of the second project
14 [
15 {"to": "id", "value": 2, "unique": true, "primary": true, "foreignKey":

null},↪→

16 {"to": "name", "value": "Project B", "unique": false, "primary": false,
"foreignKey": null}↪→

17]
18]

Listing 5.11.: Destination value groups example, which is the output of the
GraphTransformer.extract() method. The source data struc-
ture is described in 5.5. The mapping which was passed the the
extract() method for generating this output is described in the
beginning of the Listing.

In the forth step of the transformation process each destination value group is
searched for an IDestinationValue with non null foreignKey property. If a
non null property was found it is stored in a temporary variable. This step is
an important precondition for the last step of the process.

In the fifth and last step of the transformation process the extracted values
are inserted into the target object. Depending on the result from stop four
either insertForeignKey() or insert() is called. insertForeignKey() tries
to extract all sub objects from the current target object matching the foreign
key condition. If no sub-object where found the corresponding sub-object is
created within the target object. For that the method traverses the target
object using the foreign key path, if a path element is not yet created, the

45

5. Implementation

method creates the element using the provided schema to determine its correct
type. After the element was created, the method calls itself to actually insert
the destination value group. For inserting the destination object the foreign
key is used to extract all matching objects. For each matched object the
method tries to insert the passed destination value group. To do this, it is
first checked if the path in IDestinationValue.to attribute exists in the
current foreign key object, if not the path is created using the JSON schema to
determine the correct type. The next actual value is inserted into the object.
If the IDestinationValue.to attributes refers to an object, the properties of
the object are merged with the values of the destination value group, if the
element where the data should be inserted is an array, the method check if the
destination value group has an IDestinationValue with to unique attribute
set to true. If so the target array is search for an existing entry matching the
value of the IDestinationValue with the unique flag, if not the destination
value group is just appended to the array. The insertion for destination value
groups without a foreign key is similar but simpler. The insert() method
uses the provided destination prefix to traverse down the path to were the
destination value group’s entries should be placed. If a path element does not
exist, it is created using the JSON schema of the target object. If the traversal
has reached the last element of the path the destination is inserted into the
element, for that the same procedure insertForeignKey() uses is used.

The current implementation of the data transformer has some limitations which
should be part of future implementation work. It is not possible to split the
value of a property using common string operations like split or substr and
map the result to multiple properties in the target object. Also aggregating
multiple properties of the source object to one property of the target object is
currently not supported. The current implementation requires the implemented
loader services to handle updating or overwriting of existing data, this could be
moved the application itself, enabling the developer to do less implementation
work.

46

5. Implementation

5.2. Client

As mentioned in Chapter 4 the client application was created using the An-
gular.js framework. The boilerplate for the client application was created
using the scaffolding tool Yeoman66. This step was conducted to improve the
velocity of the development process. Yeoman is a command-line tool that is
extendable with generators which can create boilerplate code for all kinds of
web related applications. More than 3900 generators are available67 and can be
obtained using npm. For the client application generator-gulp-angular 68 was
chosen. The generator allows to pick between several different technologies
by interactively asking. The application is written using JavaScript following
the ECMAScript 6 specification. Since not all browsers fully support the EC-
MAScript 6 specification Babel69 is used to compile the code to ECMAScript
5.

5.2.1. Dependencies

The generated application uses Bower 70 to manage dependencies, Bower is
a package manager very similar to npm but with focus on fronted related
packages. All dependencies are stores inside the bower.json file.

For communicating with the REST API of the server application the Restangu-
lar 71 library was selected. The library is a generic HTTP client for interacting
with RESTful APIs, it has several advantages over the $resource service72 of
Angular.js, like returning promises or providing an object oriented interface for
building urls.

The application uses the Material Design73 visual language for the user in-
terfaces. Material Design was developed by Google and describes a way of

66http://yeoman.io/
67http://yeoman.io/generators/
68https://github.com/swiip/generator-gulp-angular
69https://babeljs.io/
70https://bower.io/
71https://github.com/mgonto/restangular
72https://docs.angularjs.org/api/ngResource/service/\protect\T1\

textdollarresource
73https://material.google.com

47

http://yeoman.io/
http://yeoman.io/generators/
https://github.com/swiip/generator-gulp-angular
https://babeljs.io/
https://bower.io/
https://github.com/mgonto/restangular
https://docs.angularjs.org/api/ngResource/service/\protect \T1\textdollar resource
https://docs.angularjs.org/api/ngResource/service/\protect \T1\textdollar resource
https://material.google.com

5. Implementation

designing and arranging the components of an user interface. Angular Mate-
rial74 is a framework based on the Material Design specification and was used
to create the user interface of this application.

5.2.2. Index Page and Layout

For the user it is important to quickly understand the application, therefore
the layout of the interface is kept simple with a focus on the essential. Each
page consists of two parts, the navigation bar on the top of the application and
the content container below. The navigation bar has five main items and one
button for the configuration of the client application it self. The main items
are ordered by the logical process of creating a new pipeline. A picture of the
navigation bar can be found in Figure 5.9.

Figure 5.9.: Client application navigation bar with the main items on the left
and the endpoint configuration on the right.

The first item links to dashboard which is also the main entry point or the
home page. The second and the third items are the service configurations page
and the mappings page. Both have no dependency to each other meaning
that the user can start by creating a service configuration or a mapping. The
forth navigation item is the pipelines page which has a dependency to both
the mappings and the service configuration. After a pipeline has been created
using a mapping and a service configuration it can be executed, therefore the
last main navigation item is the pipeline execution page where the output of
each pipeline execution can be viewed. On the right end of the navigation bar
a button with a remote control icon is placed. Clicking on the button opens
a model dialog allowing the user to configure the REST API endpoint of the
SyncPipes server application. A picture of the dialog can be found in Figure
5.10.

74https://material.angularjs.org/latest/

48

https://material.angularjs.org/latest/

5. Implementation

Figure 5.10.: Modal dialog for changing the API endpoint

5.2.3. Dashboard

The start page of the application is the dashboard, it enables the user to quickly
see all loaded services and see the five last pipeline executions. A picture of
the dashboard can be found in Figure 5.11.

Figure 5.11.: Dashboard of the client application, showing all loaded services
on the left and the five latest pipeline executions on the right.

By clicking on row in the dashboard’s services overview the user can visualize
the schema of the corresponding service. The schema is presented in a dialog

49

5. Implementation

over the application’s content, a image can be found in Figure 5.12. For
visualizing the JSON-Schema an external library called json-schema-viewer 75

was used. Minor customization were necessary to make the library compatible
to Angular.js.

Figure 5.12.: Dialog visualizing the JSON-Schema of a service

5.2.4. Service Configuration

Each service may expose a specific configuration which is editable through
the client application. For the service configuration an overview page was
created, where all services are listed as boxes. Inside each box all service
specific configurations are listed. These configurations can be modified or
deleted. For modifying a configuration the user has to click on an entry which
opens a dialog. Configurations can be deleted by clicking on the button with
the delete icon on the right end of each row. A picture of the page can be
found in Figure 5.13.

75http://jlblcc.github.io/json-schema-viewer/

50

http://jlblcc.github.io/json-schema-viewer/

5. Implementation

Figure 5.13.: Service configuration page

New configuration can be created by clicking on the Create new configuration
button on the top of the page. Clicking on the button opens a modal dialog
containing a form. First the user has to select the service for which a new
configuration should be created. After selecting a service the application
dynamically creates input fields according to the configuration’s JSON-Schema
of the service. For the dynamic part of the form the Angular.js module Angular
Schema From76 is used. The module uses a JSON-Schema to generate a
form and validate the input. To make the module compatible to the Angular
Material framework, an additional module called Angular Material Decorator 77

was necessary to include. The form dialog is also used when the user clicks
on a row on the overview page to edit an existing service configuration. An
example of the dialog, displaying the form of the GitHubIssueExtractor can be
found in Figure 5.14.

76https://github.com/json-schema-form/angular-schema-form
77https://github.com/json-schema-form/angular-schema-form-material

51

https://github.com/json-schema-form/angular-schema-form
https://github.com/json-schema-form/angular-schema-form-material

5. Implementation

Figure 5.14.: Service configuration form of the GitHubIssueExtractor

5.2.5. Mappings

Besides configurations the user needs to define the mapping between the source
and the target system, for that another page was created. Existing mappings
are listed within a table on the mappings page, where the user can get a quick
overview over existing mappings. The table has six columns containing the
name, the extractor and loader service, the time when the mapping was created
and the time when the mapping was last modified. The last column contains
buttons for editing or deleting a mapping. A button for creating new mapping
is placed above the table. A screenshot of the table can be found in Figure 5.15.
Even if the Material Design specification describes a data table component78 it
is not yet implement in the Angular Material framework79. To overcome this
caveat a third party Angular.js module called Material Design Data Table80

was used. It provides features like pagination and sorting therefore it was the

78https://material.google.com/components/data-tables.html
79https://github.com/angular/material/issues/796
80https://github.com/daniel-nagy/md-data-table

52

https://material.google.com/components/data-tables.html
https://github.com/angular/material/issues/796
https://github.com/daniel-nagy/md-data-table

5. Implementation

ideal solution for displaying tabular data while adhering to the Material Design
specification.

Figure 5.15.: Table of all mappings stored in the system

Due to the complexity of creating or editing mappings the form was implemented
as an extra page. In the beginning of the page the user can enter the name
of the mapping, which is just a helper for the user and not relevant for the
actual process of data transformation. After the input for the name the page is
divided into two columns, on the right column the user selects the extractor
service, on the left side the loader service. After selecting a loader or extractor
service the corresponding JSON-Schema is visualized using the same technique
mentioned in Subsection 5.2.3. Visualizing the schemata of the services helps
the user to create the mapping since it is easier to understand the data model
of the source (extractor) and the target (loader) system. The upper part of the
mapping form can be found in Figure 5.16.

Figure 5.16.: Service selection and schema visualization of the mapping form

53

5. Implementation

The second part of the mapping form is the actual input for the mapping
information. The user can create arbitrary mapping groups containing arbitrary
property mappings. Following the data model of the mapping, each mapping
group has an input field for the toPrefix. If the user clicks on a node inside
the schema visualizer of the loader service, the input field is automatically filled
with the path to the selected node. Inside a mapping group the user can add
property mappings by clicking the Add Property button inside each group. For
each property mapping a new row is added inside the corresponding group
containing text input fields for the fromPath, toPath and foreignKey property
of the IPropertyMapping. The uniqueKey and the primaryKey properties are
mapped to two check-boxes indicating whenever the flag is set or not. The last
element of each row is a button with a delete icon enabling the user to delete a
property mapping row. An example of a form containing two mapping groups
can be found in Figure 5.17.

Figure 5.17.: Mapping form with two mapping groups containing several prop-
erty mappings

5.2.6. Pipelines

A pipeline is the composition of a loader and extractor configuration and a
mapping. All existing mappings are listed within a table on the pipelines page

54

5. Implementation

of the application. Like the mappings table, the table uses the Material Design
Data Table module. The pipeline table contains six columns with the name,
the associated mapping, the extractor service configuration, the loader service
configuration, a flag indicating whenever the pipeline is passive, the date when
the pipeline was created and the date when the pipeline was last modified. The
last column contains three different buttons with pipeline specific actions. The
pencil icon opens a form in a modal dialog when clicked, enabling the user to
modify existing pipelines. Deleting existing pipelines can be done by clicking
on the button with the delete icon. Executing a pipeline is done by clicking on
the button with the play icon. A screenshot with the table can be found in
Figure 5.18.

Figure 5.18.: Table with Pipelines

To create a new pipeline the user has to click on the create new pipeline button
on the right side above the table, this opens a form dialog. The dialog contains a
text input for the name of the pipeline, like the name of the service configuration
or the mapping, the name has no relevance to the data transformation process
and is just there for the user to ease identifying the correct pipeline. Besides the
text input the form dialog contains three select inputs where the user chooses
the extractor service configuration, the loader service configuration and the
mapping of which the pipeline will be composed. The same dialog is also open
when the user clicks the edit button inside the tables actions column. The
dialog can be found in Figure 5.19.

55

5. Implementation

Figure 5.19.: Modular dialog form for creating or editing pipelines

When the user invokes the execution of a pipeline using the button in the
table, the application checks if the pipeline uses a passive extractor service. For
passive extractor services the application opens a modal dialog upload form,
where the user can select one or more files which should be sent to the pipeline.
A picture of the dialog can be found in Figure 5.20. For uploading the file a
Angular.js module called ng-file-upload81 was used.

Figure 5.20.: Modular dialog for uploading data to execute passive extractor
services

81https://github.com/danialfarid/ng-file-upload

56

https://github.com/danialfarid/ng-file-upload

5. Implementation

Whether the extractor service is active or passive, if the pipeline was successfully
queued for execution the server return the created pipeline execution object. A
toast message82 with a button linking to created pipeline execution is shown
to the user after the client application received a successful response from the
server. This allows the user to directly jump to the pipeline execution detail
view which is described in Subsection 5.2.7. A example toast message can be
found in Figure 5.21.

Figure 5.21.: Toast message after successfully queuing a pipeline for execution

5.2.7. Pipeline Executions

For the user it is important to see the status of each pipeline execution, for
that two extra pages were created. The first page lists all pipeline executions
inside a table. Like all other tables in the client application the table is created
using the Material Design Data Table module. In contrast to the other tables,
the pipeline executions table uses server side sorting and pagination. This was
done because a larger amount of entries can be expected for this particular
table. The first column of the table contains the name of the executed pipeline.
The second column contains the start time of the execution. The finish time of
the execution is displayed in the third column, if the execution is still in process
N/A is displayed instead. The fourth column contains the calculated duration
the pipeline has taken for executing. This is information is only available if the
pipeline has finished or failed. The duration is calculated using the JavaScript
library moment.js83. To format the output of the calculation a moment.js
plugin called Moment Duration Format84 was used. The fifth column contains
the status of the pipeline execution. The status can have three different values,
82https://material.google.com/components/snackbars-toasts.html#

snackbars-toasts-usage
83http://momentjs.com/
84https://github.com/jsmreese/moment-duration-format

57

https://material.google.com/components/snackbars-toasts.html#snackbars-toasts-usage
https://material.google.com/components/snackbars-toasts.html#snackbars-toasts-usage
http://momentjs.com/
https://github.com/jsmreese/moment-duration-format

5. Implementation

Running indicates that the pipeline execution is currently in progress, Finished
indicated a successful pipeline execution and Failed indicated that an error has
occurred while executing the pipeline. To improve the usability of the table
each row has a different color based on the execution status. Rows with the
status Running have a blue background, Finished rows have a green background
and Failed rows have a red background. The last column contains a button
linking to the pipeline execution details page. A screenshot of the pipeline
executions table can be found in Figure 5.22.

Figure 5.22.: Pipeline executions table

On the detail page of a pipeline execution the user can see the status, the
start time and the finish time. In addition to that all log messages generated
during the transformations process are visible. Each log entry is displayed
inside a box containing the log level, the time when the log entry was created,
the log message and optionally a JSON representation of the context object.
Depending on the level of the log message a different color is assigned to left
border of each log message entry box. The following colors are assigned: Debug
(grey), Info (blue), Warning (yellow), Error (red) or Fatal (dark red). Above
the log messages a select menu is displayed allowing the user to filter for log
messages of a specific level. A picture of the page can be found in Figure
5.23.

58

5. Implementation

Figure 5.23.: Pipeline execution detail page, with the filter set to displaying all
messages except debug messages.

59

6. Evaluation

To improve the application, find flaws and validate the architecture we conducted
an evaluation involving two research associate (RA) at the chair 19 of the
computer science faculty. Both RAs have at least four years software engineering
experience. The evaluation included both the client and the server application.
While the focus for the server application was on the architecture and the
implementation process, the focus for the client was on usability. The two RAs
were granted access to the source code of the application on the 1st of May 2016.
The two RAs where presented with the problem of creating a new pipeline
by implementing custom services. Each pipeline requires an extractor and
loader service, therefore the RAs had to implement both. The expected result
were two piplines or four new services. The RAs where provided with multiple
documents containing technical documentation. For the server application
three documents where provided. The first document README.md describes how
to configure the SE’s environment to build and execute the application. The
second document HOW_TO_CREATE_A_SERVICE.md is a step-by-step guideline
describing how to implement a new service. The third document api.html is
a reference documentation for using the SyncPipes REST API. For the client
application they where also provided with a README.md describing how to setup
their environment to execute the client application. All these documents can
also be found in the appendix. Besides technical documentation the project
contained the source code of the four services described in Chapter 5. Besides
for the evaluation irrelevant questions regarding the development environment,
RA1 had issues understanding the format of the mapping information format,
as a result the documentation regarding the mapping format is improved in
the final version. Further the RA wanted to create automated tests using
Mocha, this was not designated and therefore not documented. We discussed
the matter and provided guidance for implementing basic tests. As a result the
documentation will be supplemented with details about writing tests. Besides
documentation the next iteration of the prototype should contain mock objects

60

6. Evaluation

enabling to assert that the implemented service works as expected within the
application [15, 18, pp.]. Further it would be useful for the DEV to have a test
factory enabling testing without having to test with actual data. This can be
further enhanced by integration it into the gulp process providing a continues
testing approach.

While implementing the extractor service RA2 wanted to provide dynamic
configuration values which depend on each other. An example would be a
relational database system where the SA first selects a schema from a list and
then a list of tables of schema is presented to the SA. After some discussion we
agreed that this would be possible in general, but that is out of the scope of
this work. The use case described by the RA also requires the application to
be able to handle services with dynamic schemata. After discussing the issue
with both RAs the proposed re-factored solution is to extend the IService’s
getSchema to return a Promise. This enables the DEV to dynamically load a
schema based on configuration parameters or other input parameters like the
mapping. RA2 did a first implementation providing the described functionality.
When implementing the services RA2 found minor bugs withing the data
transformation module. After discussing the discovered issues we were able
to fix the bugs enabling the RA to further implement the service. Besides
issues related to the application both RAs had minor problems related to the
asynchronous programming concept of node.js in conjunction with the use of
recursion and loops. As a result future version should contain a document with
pattern or idioms about working with mixture of asynchronous and synchronous
JavaScript code.

The evaluation of the client application was conducted in the form of an
open interview with the two RAs mentioned above. Some of the proposed
changes resulted in findings from the server application evaluation. The first
proposal by RA2 was that it is necessary to extend the mapping form with a
second select box below the select box where the services are selected. The
select box contains all available configurations for the above select service.
This is necessary to support services with dynamic schemata depending on
configuration parameters. Along with the proposal the RA implemented the
functionality into the prototype. Resulting from proposal of more dynamic
configurations, also the client application has to be changed. The component
rendering the form for a service configuration based on its JSON-Schema has to

61

6. Evaluation

improved to support custom JSON-Schema types and asynchronous loading of
values present through a select box. The select box should also support to load
these values based on another service configuration parameter select prior. As
this feature is rather complex it was decided to postpone the implementation to
future prototype. Another finding was the order of the items in the applications,
both RAs where confused since the order of the items did not reflect the actual
process of creating a new pipeline. Therefore the ordering of the navigation
items has been changed to align with the logical order of the pipeline creation
process. RA1 proposed to enhance all data-tables with filters for some columns.
For example to be able to filter the pipeline executions table by a specific service,
pipeline or status. The main issues noticed by both RAs was the usability of
the mapping form. It was noticed that it should be possible to connect the
properties of the source and the target system graphically e.g. thought drag
and drop. Also it was mentioned that it would be easier for the end user to
have the mapping form prefilled with all properties declared as required in
the JSON-Schema. In addition to that it was mentioned there should be a
possibility to validate the mapping before saving it. Syntactical validation of
the mapping is already performed, but this is not sufficient for the end user to
verify if the mapping works as expected. A possible solution to this would be a
dry run mode in the form of a modal dialog where the data transformation is
only simulated. The remarks about the mapping form need further discussion
and are out of the scope of this work but should be implemented in some form
in the next development iteration of the client application.

62

7. Conclusion

By analyzing literature and existing data integration tools it was shown that
there is clearing a shortfall in lightweight extensible data integration tools for the
SAKM domain. Implementing a first prototype seemed to be the obvious choice.
Using JSON-Schema as foundation for the presentation of the domain models
as well as foundation for the data integration algorithm is a new approach for
the problem domain. This approach is certainly useful when integration data
from or into services having a RESTful JSON API since most API are described
using the JSON-Schema meta-model. The implemented application is designed
as extensible framework allowing developers to quickly build new services which
allow connecting the application to other system. By providing an REST API
the application is integrable in almost every environment independently of
the technologies around it. The use of TypeScript is a good balance between
providing a wide range of typical object orient language constructs and while still
having a lightweight and less error prone development platform (node.js). The
evaluation results revealed the aspects, that should be addressed by the future
work. In the current state of the application functionalities like updating data,
creating associations (e.g. Foreign Key inserts) or removing orphaned data have
to be implemented in each service by the developer. These functionalites should
be implemented in the application’s core to further reduce the developers effort.
The current implementation of the data transformation algorithm supports only
the most basic operations, this could be improved with features like aggregation
or partitioning. A potential solution would be the introduction of a custom
DSL or function which are applicable to each property mapping. Also the client
application should be improved in the means of usability. A potential way to
do this would be to conduct expert interviews.

63

Bibliography

[1] R. Capilla, A. Jansen, A. Tang, P. Avgeriou, and M. Babar, “10 years of
software architecture knowledge management: Practice and future”,
Journal of systems and software, vol. 116, pp. 191–205, 2016, cited By 0.
doi: 10.1016/j.jss.2015.08.054 (pages 1, 3).

[2] H. v. Vliet, “Software architecture knowledge management”, in 19th
australian conference on software engineering (aswec 2008), Mar. 2008,
pp. 24–31. doi: 10.1109/ASWEC.2008.4483186 (page 1).

[3] R. Weinreich and I. Groher, “A fresh look at codification approaches for
sakm: A systematic literature review”, Lecture notes in computer science
(including subseries lecture notes in artificial intelligence and lecture
notes in bioinformatics), vol. 8627 LNCS, pp. 1–16, 2014, cited By 2.
doi: 10.1007/978-3-319-09970-5_1 (pages 1, 3).

[4] T. Knap, M. Kukhar, B. Macháč, P. Škoda, J. Tomeš, and J. Vojt,
“Unifiedviews: An etl framework for sustainable rdf data processing”,
Lecture notes in computer science (including subseries lecture notes in
artificial intelligence and lecture notes in bioinformatics), vol. 8798,
pp. 379–383, 2014, cited By 0. doi: 10.1007/978-3-319-11955-7_52
(page 9).

[5] R. C. Martin. (2003). The Principles of OOD, [Online]. Available:
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod

(visited on 05/25/2016) (page 10).

[6] V. Karpov. (2013). The MEAN Stack: MongoDB, ExpressJS, AngularJS
and Node.js, [Online]. Available:
http://blog.mongodb.org/post/49262866911/the-mean-stack-

mongodb-expressjs-angularjs-and (visited on 07/02/2016)
(page 11).

64

http://dx.doi.org/10.1016/j.jss.2015.08.054
http://dx.doi.org/10.1109/ASWEC.2008.4483186
http://dx.doi.org/10.1007/978-3-319-09970-5_1
http://dx.doi.org/10.1007/978-3-319-11955-7_52
http://butunclebob.com/ArticleS.UncleBob.PrinciplesOfOod
http://blog.mongodb.org/post/49262866911/the-mean-stack-mongodb-expressjs-angularjs-and
http://blog.mongodb.org/post/49262866911/the-mean-stack-mongodb-expressjs-angularjs-and

Bibliography

[7] R. T. Fielding, “Architectural Styles and the Design of Network-based
Software Architectures”, Dissertation, University of California, Irvine,
2000 (page 12).

[8] Microsoft. (2016). TypeScript Website, [Online]. Available:
https://www.typescriptlang.org/ (visited on 04/11/2016) (page 12).

[9] Ecma International, ECMAScript 2015 Language Specification, 6th.
Geneva, 2015 (page 12).

[10] Microsoft. (2016). TypeScript Language Specification, Version 1.8,
[Online]. Available: https:
//github.com/Microsoft/TypeScript/blob/master/doc/spec.md#2-

basic-concepts (visited on 06/06/2016) (page 13).

[11] OASIS. (2016). Amqp is the internet protocol for business messaging,
[Online]. Available: http://www.amqp.org/about/what (visited on
06/06/2016) (page 14).

[12] M. Fowler. (2014). Presentation model, [Online]. Available:
http://martinfowler.com/eaaDev/PresentationModel.html

(visited on 06/26/2016) (page 15).

[13] J. Grossman. (2005). Introduction to Model/View/ViewModel pattern
for building WPF apps, [Online]. Available: https://blogs.msdn.
microsoft.com/johngossman/2005/10/08/introduction-to-

modelviewviewmodel-pattern-for-building-wpf-apps/ (visited on
06/26/2016) (page 15).

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns:
Elements of Reusable Object-oriented Software. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1995, isbn:
0-201-63361-2 (page 42).

[15] S. Freeman and N. Pryce, Growing object-oriented software, guided by
tests, 1st. Addison-Wesley Professional, 2009, isbn: 0321503627,
9780321503626 (page 61).

65

https://www.typescriptlang.org/
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md#2-basic-concepts
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md#2-basic-concepts
https://github.com/Microsoft/TypeScript/blob/master/doc/spec.md#2-basic-concepts
http://www.amqp.org/about/what
http://martinfowler.com/eaaDev/PresentationModel.html
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/
https://blogs.msdn.microsoft.com/johngossman/2005/10/08/introduction-to-modelviewviewmodel-pattern-for-building-wpf-apps/

A. Appendix

SyncPipes RESTful Server

Requirements
MongoDB
RabbitMQ
node.js and npm
Typings npm install --global typings
Gulp npm install --global gulp-cli

Install
1. Run npm install
2. Run typings install
3. Run gulp serve

Docker support
The application has build in Docker support. It also supports docker-compose to manage all
dependencies.

You can start the complete application stack using docker-compose up

Using the API
To use access the API either a generic REST-Client like Postman or the official SyncPipes
client application can be used.

We suggest to use the official Angular.js client application.

The complete API documentation can be found in docs/API.md

Figure A.1.: Readme file of the SyncPipes REST Server

i

A. Appendix

1. Install node.js and npm (https://nodejs.org/en/download/)
2. Install global node.js dependencies: npm install --global typings gulp-cli
3. Checkout the project using git: git clone git@github.com:FKSE/syncpipes-ui.git
4. Change into the server subdirectory cd app/server
5. Install node.js dependencies npm install
6. Install Typescript definitions typings install
7. Make sure you have access to a MongoDB instance. You can use docker for this: docker run --name my-

mongo -p 27017:27017 -d mongo:latest

8. Make sure you have access to a RabbitMQ instance. You can use docker for this: docker run -d --hostname
my-rabbit --name my-rabbit -p 5672:5672 -e RABBITMQ_DEFAULT_USER=syncpipes -e

RABBITMQ_DEFAULT_PASS=syncpipes rabbitmq:3

9. Copy the .env.sample file to .env and adjust it to your needs and environment.
10. Run gulp serve to start the server and the worker process.

API-Documentation is written using api blueprint.

Markdown Version
HTML Version
HTML Online Version

Before starting:

Decide which kind of service you going to implement. A Extractor services extracts data from the source system.
A Loader service loads data into the target system.

Know your data:

You will need to describe your data using JSONSchema so get familiar with the concepts.

Decide if you wan’t to create a Extractor or Loader service
Create a folder for your extension inside the ./services folder

How to create a SyncPipes Service

Setting up your environment

Exploring the API

Implementing your own service

Planning

Implementing your adapter

Figure A.2.: Guide for implementing a new service page 1

ii

A. Appendix
Before starting:

Decide which kind of service you going to implement. A Extractor services extracts data from the source system.
A Loader service loads data into the target system.

Know your data:

You will need to describe your data using JSONSchema so get familiar with the concepts.

This view requires setWantsLayer:YES when blendingMode == NSVisualEffectBlendingModeWithinWindowHOW_TO_CREATE_A_SERVICE.md
Before starting:

Decide which kind of service you going to implement. A Extractor services extracts data from the source system.
A Loader service loads data into the target system.

Know your data:

You will need to describe your data using JSONSchema so get familiar with the concepts.

This view requires setWantsLayer:YES when blendingMode == NSVisualEffectBlendingModeWithinWindowHOW_TO_CREATE_A_SERVICE.md

Create a service.ts file and implement your service.
Load the service inside bootstrap.ts

Get the client application and follow the instructions from the client’s README.md file to start it.
Use the client application to create a configuration for an extractor and a loader service.
Create a mapping between an extractor and a loader service.
Create a pipeline using the previously created service configurations and mapping.
Execute the created pipelines and check the created log entries to verify your implemented services are
working as expected.

import { config } from 'dotenv';
import { Kernel } from './app/index';
import { RequirementsExcelExtractorService } from "./services/requirementsExcelExtractor/service";
import { RequirementsMySQLLoaderService } from "./services/requirementsMysqlLoader/service";
import { GitHubIssueExtractorService } from "./services/githubIssueExtractor/service";
import { PureIssueLoaderService } from "./services/pureIssueLoader/service";
// import your service here
import { MyLoaderService } from "./services/myLoader/service";
import { MyExtractorService } from "./services/myExtractor/service";
// parse .env file
config({silent: true});

// init kernel
let kernel = new Kernel({ // ... });
// load extensions
kernel.loadService(new RequirementsExcelExtractorService());
kernel.loadService(new RequirementsMySQLLoaderService());
kernel.loadService(new GitHubIssueExtractorService());
kernel.loadService(new PureIssueLoaderService());

// load your service here
kernel.loadService(new MyLoaderService());
kernel.loadService(new MyExtractorService());

export { kernel }

Figure A.3.: Guide for implementing a new service page 2

iii

A. Appendix

List PipelineExecutions

Hide

limit

page

order
Show

View Pipeline Execution Details

Hide

pipeline_execution...

Show

SyncPipes API
SyncPipes management API for managing Service Con�gurations, Mappings and Pipelines

Pipeline Execution
Resources related to the Pipeline Executions interface of the API. A Pipeline execution contains the
output of the execution of a pipeline.

PIPELINEEXECUTIONS COLLECTION

GET /pipeline-executions{?limit,page,order}

List all pipeline executions

Example URI

GET /pipeline-executions?limit=100&page=1&order=started

URI Parameters

number (required)
The maximum number of pipeline executions which will be in the
response.

number (required)
The page to display, only if the total count of executions is greater then
the limit.

string (required)
Response 200

PIPELINE EXECUTION

GET /pipelines/{pipeline_execution_id}

Example URI

GET /pipelines/5742c2e484ac324326514ff8

URI Parameters

string (required)
ID of the Pipeline Execution in form of an BSON ObjectID

Response 200

http://localhost:3010/api/v1

Example: 100

Example: 1

Example: started

http://localhost:3010/api/v1

Example: 5742c2e484ac324326514ff8

Figure A.4.: SyncPipes REST API Documentation page 1

iv

A. Appendix

List Pipelines

Show

Create New Pipeline

Show

Show

View Pipeline Details

Hide

pipeline_id

Show

Update a Pipeline

Hide

Pipeline
Resources related to Pipelines in the API.

PIPELINE COLLECTION

GET /pipelines

Example URI

GET /pipelines

Response 200

POST /pipelines

Example URI

POST /pipelines

Request

Response 201

PIPELINE

GET /pipelines/{pipeline_id}

Example URI

GET /pipelines/5742c2e484ac324326514ff8

URI Parameters

string (required)
ID of the Pipeline in form of an BSON ObjectID

Response 200

PUT /pipelines/{pipeline_id}

Example URI

PUT /pipelines/5742c2e484ac324326514ff8

URI Parameters

http://localhost:3010/api/v1

http://localhost:3010/api/v1

http://localhost:3010/api/v1

Example: 5742c2e484ac324326514ff8

http://localhost:3010/api/v1

Figure A.5.: SyncPipes REST API Documentation page 2

v

A. Appendix

pipeline_id

Show

Show

List All Mappings

Show

Create New Mappings

Show

Show

List Mapping

Hide

mapping_id

Show

Update Mapping

string (required)
ID of the Pipeline in form of an BSON ObjectID

Request

Response 200

Mapping
MAPPING COLLECTION

GET /mappings

Example URI

GET /mappings

Response 200

POST /mappings

Example URI

POST /mappings

Request

Response 201

MAPPING

GET /mappings/{mapping_id}

Example URI

GET /mappings/5742c2e484ac324326514ff8

URI Parameters

string (required)
ID of the Mapping in form of an BSON ObjectID

Response 200

PUT /mappings/{mapping_id}

Example: 5742c2e484ac324326514ff8

http://localhost:3010/api/v1

http://localhost:3010/api/v1

http://localhost:3010/api/v1

Example: 5742c2e484ac324326514ff8

Figure A.6.: SyncPipes REST API Documentation page 3

vi

A. Appendix

Hide

mapping_id

Show

Show

List All Services

Show

View Service

Hide

service_name

Show

View All Service Con�gurations

Example URI

PUT /mappings/5742c2e484ac324326514ff8

URI Parameters

string (required)
ID of the Mapping in form of an BSON ObjectID

Request

Response 200

Service
SERVICE COLLECTION

GET /services

Responds a list of all loaded services including their schema.

Example URI

GET /services

Response 200

SERVICE

GET /services/{service_name}

Example URI

GET /services/GitHubIssueExtractor

URI Parameters

string (required)
Name of the service

Response 200

SERVICE CONFIGURATION COLLECTION

GET /services/{service_name}/configs

http://localhost:3010/api/v1

Example: 5742c2e484ac324326514ff8

http://localhost:3010/api/v1

http://localhost:3010/api/v1

Example: GitHubIssueExtractor

Figure A.7.: SyncPipes REST API Documentation page 4

vii

A. Appendix

Hide

service_name

Show

Create New Service Con�guration

Hide

service_name

Show

Show

View Service Con�guration

Hide

service_name

con�g_id

Show

Update a Service Con�guration

Example URI

GET /services/GitHubIssueExtractor/con�gs

URI Parameters

string (required)
Name of the service

Response 200

POST /services/{service_name}/configs

Example URI

POST /services/GitHubIssueExtractor/con�gs

URI Parameters

string (required)
Name of the service

Request

Response 200

SERVICE CONFIGURATION

GET /services/{service_name}/configs/{config_id}

Example URI

GET /services/GitHubIssueExtractor/con�gs/5742c2e484ac32432
6514ff8

URI Parameters

string (required)
Name of the service

string (required)
ID of the Service con�g in form of an BSON ObjectID

Response 200

PUT

/services/{service_name}/configs/{config_id}

Example URI

http://localhost:3010/api/v1

Example: GitHubIssueExtractor

http://localhost:3010/api/v1

Example: GitHubIssueExtractor

http://localhost:3010/api/v1

Example: GitHubIssueExtractor

Example: 5742c2e484ac324326514ff8

Figure A.8.: SyncPipes REST API Documentation page 5

viii

A. Appendix

Hide

service_name

con�g_id

Show

Show

PUT /services/GitHubIssueExtractor/con�gs/5742c2e484ac32432
6514ff8

URI Parameters

string (required)
Name of the service

string (required)
ID of the Service con�g in form of an BSON ObjectID

Request

Response 200

http://localhost:3010/api/v1

Example: GitHubIssueExtractor

Example: 5742c2e484ac324326514ff8

Figure A.9.: SyncPipes REST API Documentation page 6

ix

A. Appendix

bower
node.js & npm
gulp

Run the following commands on your terminal inside the root directory of the project.

 npm install

 bower install

 gulp serve

The last command should open a tab inside you default browser, serving the application. If not check the output of
the command to find out the current address of the application.

The application expects the server to be running at http://localhost:3010 . If you changed the address of the
API then use button on the rightmost position of the navigation bar on the top to change the API address.

If not already executed, run the following commands:

 npm install

 bower install

Invoke the default gulp task by running gulp .

After the command has finished the production version of the application has been build. You can copy the contents
of dist/ to your web server.

SyncPipes Client

Requirements

Installation & Running

Buildung for Production

Figure A.10.: README.md of the client application

x

	Abstract
	Inhaltsverzeichnis
	List of Abbreviations
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Motivation
	Research questions
	Thesis Structure

	Use Cases
	Existing data integration tools
	Architecture
	Server
	Overview
	Technology

	Client
	Overview
	Technology

	Implementation
	Server
	Dependencies
	Gulp
	TypeScript Definitions
	Docker
	Application Core
	RESTful API
	Persistence Layer
	Message Queuing
	Third Party Services
	Pipeline Execution
	Data transformation

	Client
	Dependencies
	Index Page and Layout
	Dashboard
	Service Configuration
	Mappings
	Pipelines
	Pipeline Executions

	Evaluation
	Conclusion
	Bibliography
	Appendix

